Advertisement

Improved Particle Filtering for Pseudo-Uniform Belief Distributions in Robot Localisation

  • David Budden
  • Mikhail Prokopenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8371)

Abstract

Self-localisation, or the process of an autonomous agent determining its own position and orientation within some local environment, is a critical task in modern robotics. Although this task may be formally defined as a simple transformation between local and global coordinate systems, the process of accurately and efficiently determining this transformation is a complex task. This is particularly the case in an environment where localisation must be inferred entirely from noisy visual data, such as the RoboCup robot soccer competitions. Although many effective probabilistic filters exist for solving this task in its general form, pseudo-uniform belief distributions (such as those arising from course-grain observations) exhibit properties allowing for further performance improvement. This paper explores the RoboCup 2D Simulation League as one such scenario, approximating the artificially constrained noise models as uniform to derive an improved particle filter for self-localisation. The developed system is demonstrated to yield from 38.2 to 201.3% reduction in localisation error, which is further shown as corresponding with a 6.4% improvement in goal difference across approximately 750 games.

Keywords

Robotics localisation particle filter robot soccer 

References

  1. 1.
    Akiyama, H.: Agent2D Base Code (2010), http://www.rctools.sourceforge.jp
  2. 2.
    Bai, A., Zhang, H., Lu, G., Jiang, M., Chen, X.: Gliders2012 wrighteagle 2d soccer simulation team description 2012. In: RoboCup 2012 Symposium and Competitions: Team Description Papers, Mexico City, Mexico (June 2012)Google Scholar
  3. 3.
    Budden, D., Fenn, S., Mendes, A., Chalup, S.: Evaluation of colour models for computer vision using cluster validation techniques. In: Chen, X., Stone, P., Sucar, L.E., van der Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 261–272. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Budden, D., Fenn, S., Walker, J., Mendes, A.: A novel approach to ball detection for humanoid robot soccer. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS, vol. 7691, pp. 827–838. Springer, Heidelberg (2012)Google Scholar
  5. 5.
    Butler, M., Prokopenko, M., Howard, T.: Flexible synchronisation within RoboCup environment: A comparative analysis. In: Stone, P., Balch, T., Kraetzschmar, G. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 119–128. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    Chen, M., Dorer, K., Foroughi, E., Heintz, F., Huang, Z., Kapetanakis, S., Kostiadis, K., Kummeneje, J., Murray, J., Noda, I., et al.: Robocup soccer server, Manual for Soccer Server Version 7 (2003)Google Scholar
  7. 7.
    Hill, F., Kelley, S.: Computer graphics: using openGL. Prentice Hall, Upper Saddle River (2001)Google Scholar
  8. 8.
    Noda, I., Stone, P.: The RoboCup Soccer Server and CMUnited Clients: Implemented Infrastructure for MAS Research. Autonomous Agents and Multi-Agent Systems 7(1-2), 101–120 (July-September)Google Scholar
  9. 9.
    Prokopenko, M., Obst, O., Wang, P., Held, J.: Gliders2012: Tactics with action-dependent evaluation functions (2012)Google Scholar
  10. 10.
    Prokopenko, M., Wang, P.: Evaluating team performance at the edge of chaos. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 89–101. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Prokopenko, M., Wang, P.: Relating the entropy of joint beliefs to multi-agent coordination. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 367–374. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Russell, S., Norvig, P., Canny, J., Malik, J., Edwards, D.: Artificial intelligence: a modern approach, vol. 2. Prentice Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  13. 13.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics, vol. 1. MIT Press, Cambridge (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • David Budden
    • 1
  • Mikhail Prokopenko
    • 1
  1. 1.Information and Communications Technologies CentreAdaptive Systems Commonwealth Scientific and Industrial Research Organisation (CSIRO)EppingAustralia

Personalised recommendations