Advertisement

Online Generated Kick Motions for the NAO Balanced Using Inverse Dynamics

  • Felix Wenk
  • Thomas Röfer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8371)

Abstract

One of the major tasks of playing soccer is kicking the ball. Executing such complex motions is often solved by interpolating key-frames of the entire motion or by using predefined trajectories of the limbs of the soccer robot. In this paper we present a method to generate the trajectory of the kick foot online and to move the rest of the robot’s body such that it is dynamically balanced. To estimate the balance of the robot, its Zero-Moment Point (ZMP) is calculated from its movement using the solution of the Inverse Dynamics. To move the ZMP, we use either a Linear Quadratic Regulator on the local linearization of the ZMP or the Cart-Table Preview Controller and compare their performances.

Keywords

Joint Angle Humanoid Robot Ball Position Linear Quadratic Regulator Bezier Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Belanger, P.: Estimation of angular velocity and acceleration from shaft encoder measurements. In: Proceedings of the 1992 IEEE International Conference on Robotics and Automation, vol. 1, pp. 585–592 (May 1992)Google Scholar
  2. 2.
    de Boor, C.: On calculating with B-splines. Journal of Approximation Theory 6(1), 50–62 (1972), http://www.sciencedirect.com/science/article/pii/0021904572900809 CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Czarnetzki, S., Kerner, S., Klagges, D.: Combining key frame based motion design with controlled movement execution. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI), vol. 5949, pp. 58–68. Springer, Heidelberg (2010)Google Scholar
  4. 4.
    Doya, K.: Bayesian Brain: Probabilistic Aproaches to Neural Coding. Computational Neuroscience Series. MIT Press (2007)Google Scholar
  5. 5.
    Fang, A.C., Pollard, N.S.: Efficient synthesis of physically valid human motion. ACM Trans. Graph. 22(3), 417–426 (2003), http://doi.acm.org/10.1145/882262.882286 CrossRefGoogle Scholar
  6. 6.
    Farin, G.: Curves and Surfaces for CAGD: A Practical Guide. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling (2002)Google Scholar
  7. 7.
    Featherstone, R.: Rigid Body Dynamics Algorithms. Springer (2008)Google Scholar
  8. 8.
    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2003, vol. 2, pp. 1620–1626 (September 2003)Google Scholar
  9. 9.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of the ASME–Journal of Basic Engineering 82, 35–45 (1960), http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf CrossRefGoogle Scholar
  10. 10.
    Katayama, T., Ohki, T., Inoue, T., Kato, T.: Design of an optimal controller for a discrete-time system subject to previewable demand. International Journal of Control 41(3), 677–699 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Müller, J., Laue, T., Röfer, T.: Kicking a ball – modeling complex dynamic motions for humanoid robots. In: Ruiz-del-Solar, J., Chown, E., Plöger, P.G. (eds.) RoboCup 2010. LNCS (LNAI), vol. 6556, pp. 109–120. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Röfer, T., Laue, T., Müller, J., Bösche, O., Burchardt, A., Damrose, E., Gillmann, K., Graf, C., de Haas, T.J., Härtl, A., Rieskamp, A., Schreck, A., Sieverdingbeck, I., Worch, J.H.: B-Human Team Report and Code Release 2009 (2009), only available online: http://www.b-human.de/file_download/26/bhuman09_coderelease.pdf
  13. 13.
    Tilgner, R., Reinhardt, T., Borkmann, D., Kalbitz, T., Seering, S., Fritzsche, R., Vitz, C., Unger, S., Eckermann, S., Müller, H., Bellersen, M., Engel, M., Wünsch, M.: Team research report 2011 Nao-Team HTWK Leipzig (2011), http://robocup.imn.htwk-leipzig.de/documents/report2011.pdf
  14. 14.
    Vukobratović, M., Borovac, B.: Zero-moment point — thirty five years of its life. International Journal of Humanoid Robotics 01(01), 157–173 (2004), http://www.worldscientific.com/doi/abs/10.1142/S0219843604000083 CrossRefGoogle Scholar
  15. 15.
    Xu, Y., Mellmann, H.: Adaptive motion control: Dynamic kick for a humanoid robot. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds.) KI 2010. LNCS (LNAI), vol. 6359, pp. 392–399. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Felix Wenk
    • 1
  • Thomas Röfer
    • 2
  1. 1.Fachbereich 3 - Mathematik und InformatikUniversität BremenBremenGermany
  2. 2.Cyber-Physical SystemsDeutsches Forschungszentrum für Künstliche IntelligenzBremenGermany

Personalised recommendations