Compliant Robot Behavior Using Servo Actuator Models Identified by Iterative Learning Control

  • Max Schwarz
  • Sven Behnke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8371)


System parameter identification is a necessary prerequisite for model-based control. In this paper, we propose an approach to estimate model parameters of robot servo actuators that does not require special testing equipment. We use Iterative Learning Control to determine the motor commands needed to follow a reference trajectory.To identify parameters, we fit a model for DC motors and friction in geared transmissions to this data using a least-squares method. We adapt the learning method for existing position-controlled servos with proportional controllers via a simple substitution. To achieve compliant position control, we apply the learned actuator models to our humanoid soccer robot NimbRo-OP. The experimental evaluation shows benefits of the proposed approach in terms of accuracy, energy efficiency, and even gait stability.


Friction Model Reference Trajectory Iterative Learn Iterative Learn Control Trajectory Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arimoto, S., Kawamura, S., Miyazaki, F.: Bettering operation of robots by learning. Journal of Robotic Systems 1(2), 123–140 (1984)CrossRefGoogle Scholar
  2. 2.
    Schwarz, M., Schreiber, M., Schueller, S., Missura, M., Behnke, S.: NimbRo-OP humanoid TeenSize open platform. In: 7th Workshop on Humanoid Soccer Robots, IEEE-RAS International Conference on Humanoid Robots, Osaka (2012)Google Scholar
  3. 3.
    Waiboer, R., Aarts, R., Jonker, B.: Velocity dependence of joint friction in robotic manipulators with gear transmissions. In: ECCOMAS Thematic Conference Multibody Dynamics (2005)Google Scholar
  4. 4.
    Mensink, A.: Characterization and modeling of a dynamixel servo. Technical report, University of Twente, Individual research assignment (2008)Google Scholar
  5. 5.
    Kim, Y.H., Lewis, F.L.: Reinforcement adaptive learning neural-net-based friction compensation control for high speed and precision. IEEE Transactions on Control Systems Technology 8(1), 118–126 (2000)CrossRefGoogle Scholar
  6. 6.
    Liu, J.-S.: Joint stick-slip friction compensation for robotic manipulators by iterative learning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 502–509 (1994)Google Scholar
  7. 7.
    Stribeck, R., Schröter, M.: Die wesentlichen Eigenschaften der Gleit- und Rollenlager: Untersuchung einer Tandem-Verbundmaschine von 1000 PS. Springer (1903)Google Scholar
  8. 8.
    Chun Bo, L., Pavelescu, D.: The friction-speed relation and its influence on the critical velocity of stick-slip motion. Wear 82(3), 277–289 (1982)CrossRefGoogle Scholar
  9. 9.
    Armstrong-Helouvry, B.: Control of Machines with Friction. International Series in Engineering and Computer Science, vol. 128. Springer (1991)Google Scholar
  10. 10.
    Waiboer, R.R.: Dynamic Modelling, Identification and Simulation of Industrial Robots – for off-line programming of robotised laser welding. University of Twente (2007)Google Scholar
  11. 11.
    Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  12. 12.
    Rigid Body Dynamics Library,
  13. 13.
    Pastrana, J., Schwarz, M., Schreiber, M., Schueller, S., Missura, M., Behnke, S.: Humanoid TeenSize open platform NimbRo-OP. In: Proceedings of 17th International RoboCup Symposium (2013)Google Scholar
  14. 14.
    Missura, M., Münstermann, C., Mauelshagen, M., Schreiber, M., Behnke, S.: RoboCup 2012 Best Humanoid Award winner NimbRo TeenSize. In: Chen, X., Stone, P., Sucar, L.E., van der Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 89–93. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Max Schwarz
    • 1
  • Sven Behnke
    • 1
  1. 1.Computer Science Institute VI: Autonomous Intelligent SystemsRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations