An Entertainment Robot for Playing Interactive Ball Games

  • Tim Laue
  • Oliver Birbach
  • Tobias Hammer
  • Udo Frese
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8371)


This paper presents a minimalistic robot for playing interactive ball games with human players. It is designed with a realistic entertainment application in mind, being safe, flexible, reasonably cheap, and reactive. This is achieved by a clever, minimalistic robot design with a 2 DOF roll tilt unit that moves a bat with a spherical head. The robot perceives its environment through a stereo camera system using a circle detector and a multiple hypothesis tracker. The vision system does not require a specific ball color or background structure. The paper motivates the proposed robot design with respect to the above mentioned requirements, describes our solution to the tracking, calibration, and control issues involved and presents indoor and outdoor experiments where the robot bats balls tossed by different players.


Unscented Kalman Filter Ball Game Human Player Spherical Head Robot Operating System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Andersson, R.L.: Dynamic sensing in a ping-pong playing robot. IEEE Trans.on Robotics and Automation 5(6) (1989)Google Scholar
  2. 2.
    Argall, B., Browning, B., Gu, Y., Veloso, M.: The first segway soccer experience: Towards peer-to-peer human-robot teams. In: Proc. Conf. on Human-Robot Interaction (2006)Google Scholar
  3. 3.
    Bätz, G., Yaqub, A., Wu, H., Kühnlenz, K., Wollherr, D., Buss, M.: Dynamic manipulation: Nonprehensile ball catching. In: Proc. IEEE Mediterranean Conf. on Control and Automation (2010)Google Scholar
  4. 4.
    Birbach, O., Frese, U.: A multiple hypothesis approach for a ball tracking system. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 435–444. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Birbach, O., Frese, U., Bäuml, B.: Realtime perception for catching a flying ball with a mobile humanoid. In: Proc. IEEE Int. Conf. on Robotics and Automation (2011)Google Scholar
  6. 6.
    Bruce, J., Balch, T., Veloso, M.: Fast and inexpensive color image segmentation for interactive robots. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2061–2066 (2000)Google Scholar
  7. 7.
    Cox, I.J., Hingorani, S.L.: An efficient implementation of reid’s multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(2), 138–150 (1996)CrossRefGoogle Scholar
  8. 8.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, pp. 886–893 (2005)Google Scholar
  9. 9.
    Fraunhofer, I.M.L.: 4attention GmbH & Co. KG: Robokeeper web site (2011),
  10. 10.
    Frese, U., Bäuml, B., Haidacher, S., Schreiber, G., Schaefer, I., Hähnle, M., Hirzinger, G.: Off-the-shelf vision for a robotic ball catcher. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (2001)Google Scholar
  11. 11.
    Fujita, M., Kitano, H.: Development of an Autonomous Quadruped Robot for Robot Entertainment. Autonomous Robots 5(1), 7–18 (1998)CrossRefGoogle Scholar
  12. 12.
    Guéziec, A.: Tracking pitches for broadcast television. Computer 35(3), 38–43 (2002)CrossRefGoogle Scholar
  13. 13.
    Hove, B., Slotine, J.: Experiments in robotic catching. In: Proc. of the American Control Conf., pp. 380–385 (1991)Google Scholar
  14. 14.
    Kimme, C., Ballard, D., Sklansky, J.: Finding circles by an array of accumulators. Comm. of the ACM 18(2) (1975)Google Scholar
  15. 15.
    Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.: RoboCup: A challenge problem for AI. AI Magazine 18(1), 73–85 (1997)Google Scholar
  16. 16.
    Owens, N., Harris, C., Stennett, C.: Hawk-eye tennis system. In: Int. Conf. on Visual Information Engineering, pp. 182–185 (2003)Google Scholar
  17. 17.
    Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: Proceedings of the Open-Source Software workshop of the International Conference on Robotics and Automation (ICRA), Kobe, Japan (2009)Google Scholar
  18. 18.
    Riley, M., Atkeson, C.G.: Robot catching: Towards engaging human-humanoid interaction. Autonomous Robots 12(1), 119–128 (2002)CrossRefzbMATHGoogle Scholar
  19. 19.
    Smith, C., Christensen, H.I.: Using COTS to construct a high performance robot arm. In: Proc. IEEE Intern. Conf. on Robotics and Automation (2007)Google Scholar
  20. 20.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  21. 21.
    Tilden, M.W.: Neuromorphic robot humanoid to step into the market. The Neuromorphic Engineer 1(1), 12 (2004)Google Scholar
  22. 22.
    Weigel, T., Nebel, B.: KiRo - an autonomous table soccer player. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 384–392. Springer, Heidelberg (2003)Google Scholar
  23. 23.
    Yan, F., Kostin, A., Christmas, W., Kittler, J.: A novel data association algorithm for object tracking in clutter with application to tennis video analysis. In: Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition (2006)Google Scholar
  24. 24.
    Yuen, H., Princen, J., Illingworth, J., Kittler, J.: A comparative study of hough transform methods for circle finding. In: Alvey Vision Conf., pp. 169–174 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tim Laue
    • 1
  • Oliver Birbach
    • 1
  • Tobias Hammer
    • 2
  • Udo Frese
    • 1
  1. 1.Cyber-Physical SystemsDeutsches Forschungszentrum für Künstliche IntelligenzBremenGermany
  2. 2.Institute of Robotics and MechatronicsDLRGermany

Personalised recommendations