Advertisement

How to Win RoboCup@Work?

The Swarmlab@Work Approach Revealed
  • Sjriek Alers
  • Daniel Claes
  • Joscha Fossel
  • Daniel Hennes
  • Karl Tuyls
  • Gerhard Weiss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8371)

Abstract

In this paper we summarize how the Swarmlab@Work team has won the 2013 world championship title in the RoboCup@Work league, which aims to facilitate the use of autonomous robots in industry. The various techniques that have been combined to win the competition come from different computer science domains, entailing learning, (simultaneous) localization and mapping, navigation, object recognition and object manipulation. While the RoboCup@Work league is not a standard platform league, all participants used a (customized) Kuka youBot. The youBot is a ground based platform, capable of omnidirectional movement and equipped with a five degree of freedom arm featuring a parallel gripper.

Keywords

Object Recognition Service Area Conveyor Belt Destination Area Grasp Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alers, S., Bloembergen, D., Claes, D., Fossel, J., Hennes, D., Tuyls, K., Weiss, G.: Swarmlab@work team description paper. Robocup (2013)Google Scholar
  2. 2.
    Chong, N.Y., Kotoku, T., Ohba, K., Tanie, K.: Virtual repulsive force field guided coordination for multi-telerobot collaboration. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA 2001), pp. 1013–1018 (2001)Google Scholar
  3. 3.
    Fox, D., Burgard, W., Frank, D., Thrun, S.: Monte carlo localization: Efficient position estimation for mobile robots. In: Proceedings of the Sixteenth National Conference on Artificial Intelligence, AAAI 1999 (1999)Google Scholar
  4. 4.
    Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robotics & Automation Magazine 4 (1997)Google Scholar
  5. 5.
    Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics 23, 43–46 (2007)CrossRefGoogle Scholar
  6. 6.
    Hall, M., Eibe, F., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  7. 7.
    Holz, D., Behnke, S.: Sancta simplicitas - on the efficiency and achievable results of slam using icp-based incremental registration. In: IEEE International Conference on Robotics and Automation, pp. 1380–1387 (2010)Google Scholar
  8. 8.
    Hon, B.E.: Wheels for a course stable selfpropelling vehicle movable in any desired direction on the ground or some other base, US Patent 3,876,255 (1975)Google Scholar
  9. 9.
    Jansen, D., Buttner, H.: Real-time ethernet: the ethercat solution. Computing and Control Engineering 15(1), 16–21 (2004)CrossRefGoogle Scholar
  10. 10.
    McCarthy, J.M.: An introduction to theoretical kinematics. MIT Press, Cambridge (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sjriek Alers
    • 1
  • Daniel Claes
    • 1
  • Joscha Fossel
    • 1
  • Daniel Hennes
    • 2
  • Karl Tuyls
    • 1
  • Gerhard Weiss
    • 1
  1. 1.Maastricht UniversityMaastrichtThe Netherlands
  2. 2.European Space Agency, ESTECNoordwijkThe Netherlands

Personalised recommendations