Advertisement

The Decision-Making Framework of WrightEagle, the RoboCup 2013 Soccer Simulation 2D League Champion Team

  • Haochong Zhang
  • Xiaoping Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8371)

Abstract

This paper presents the latest progress of WrightEagle, the champion of RoboCup 2D simulation league. We introduce a decision-making framework, an extension of MAXQ-OP framework using multiple heuristic functions and a reachable state checking method. The experimental results show that our approach improves the quality of solutions in complex situations.

References

  1. 1.
    Puterman, M.L.: Markov decision processes: discrete stochastic dynamic programming, vol. 414. Wiley. com (2009)Google Scholar
  2. 2.
    Dietterich, T.G.: The maxq method for hierarchical reinforcement learning. In: ICML, pp. 118–126. Citeseer (1998)Google Scholar
  3. 3.
    Bai, A., Wu, F., Chen, X.: Online planning for large mdps with maxq decomposition. In: Proceedings of the Autonomous Robots and Multirobot Systems Workshop, at AAMAS 2012 (June 2012)Google Scholar
  4. 4.
    Bai, A., Wu, F., Chen, X.: Towards a principled solution to simulated robot soccer. In: Chen, X., Stone, P., Sucar, L.E., van der Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 141–153. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Akiyama, H., Nakashima, T.: HELIOS2012: RoboCup 2012 Soccer Simulation 2D League Champion. In: Chen, X., Stone, P., Sucar, L.E., van der Zant, T. (eds.) RoboCup 2012. LNCS (LNAI), vol. 7500, pp. 13–19. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Akiyama, H., Nakashima, T., Yamashita, K.: HELIOS2013 Team Description Paper. In: RoboCup 2012: Robot Soccer World Cup XVI, pp. 1–6 (2012)Google Scholar
  7. 7.
    Burkhard, H.-D., Hannebauer, M., Wendler, J.: At humboldt development, practice and theory. In: Kitano, H. (ed.) RoboCup 1997. LNCS, vol. 1395, pp. 357–372. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Gabel, T., Riedmiller, M., Trost, F.: A case study on improving defense behavior in soccer simulation 2d: The neurohassle approach. In: Iocchi, L., Matsubara, H., Weitzenfeld, A., Zhou, C. (eds.) RoboCup 2008. LNCS (LNAI), vol. 5399, pp. 61–72. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Stone, P.: Layered learning in multiagent systems: A winning approach to robotic soccer. The MIT Press (2000)Google Scholar
  10. 10.
    Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement learning for robocup soccer keepaway. Adaptive Behavior 13(3), 165–188 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Haochong Zhang
    • 1
  • Xiaoping Chen
    • 1
  1. 1.Department of Computer ScienceUniversity of Science and Technology of ChinaChina

Personalised recommendations