The Walking Skill of Apollo3D – The Champion Team in the RoboCup2013 3D Soccer Simulation Competition

  • Juan Liu
  • Zhiwei Liang
  • Ping Shen
  • Yue Hao
  • Hecheng Zhao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8371)


Quick and flexible walking is an indispensable skill for humanoid robots in the RoboCup soccer competition. So this paper mainly proposed a method to develop a flexible walking based on reinforcement learning for humanoid robots, which used Cerebellar Model Articulation Controller(CMAC) method and a linear inverted pendulum with a predictive control to generate a motion trajectory of the robots trunk in the premise of keeping dynamic balance of robots. Our team Apollo3D employed this walking skill, and won the championship in the RoboCup 2013 3D simulation competition.


Cerebellar model articulation controller preview control linear inverted pendulum trunk trajectory 


  1. 1.
    Strom, J., Slavov, G., Chown, E.: Omnidirectional walking using ZMP and preview control for the nao humanoid robot. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI), vol. 5949, pp. 378–389. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Bavani, M., Ahmadi, H., Nasrinpour, R.: A closed-loop Central Pattern Generator approach to control NAO humanoid robots’ walking. In: Control, Instrumentation and Automation (ICCIA), pp. 1036–1041 (2011)Google Scholar
  3. 3.
    Behnke, S.: Online trajectory generation for omnidirectional biped walking. In: Proc. of IEEE Int. Conf. on Robotics and Automation, USA, pp. 1597–1603 (2006)Google Scholar
  4. 4.
    Seung-Joon, Y., Byoung-Tak, Z., Hong, D., Lee, D.: Online learning of a full body push recovery controller for omnidirectional walking. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids), Bled, pp. 1–6 (2011)Google Scholar
  5. 5.
    MacAlpine, P., Urieli, D., Barrett, S., Kalyanakrishnan, S., Barrera, F., Stone, P.U.: Austin Villa 2012 3D Simulation Team report (EB/OL). Technical Report AI11-10, The Univ. of Texas at Austin, Dept. of Computer Science, AI Laboratory (December 2012)Google Scholar
  6. 6.
    Chih-Min, L., Chih-Hsuan, C., Chih-Min, L., et al.: CMAC-based dynamic-balancing design for humanoid robot. In: Proceedings of SICE Annual Conference 2010, August 18-21, pp. 1849–1854 (2010)Google Scholar
  7. 7.
    Lee, J., Oh, J.-H.: Biped walking pattern generation using reinforcement learning. In: 2007 7th IEEE-RAS International Conference on Humanoid Robots, November 29-December 1, vol. 1, pp. 416–421 (2007)Google Scholar
  8. 8.
    Gouaillier, D., Kilner, C.: Omni-directional closed-loop walk for NAO. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids), Nashville, TN, pp. 448–454 (December 2010)Google Scholar
  9. 9.
    Qiang, H., Kajita, S., Koyachi, N.: A High Stability, Smooth Walking Pattern for a Biped Robot. In: Proc. of IEEE Int. Conf. on Robotics and Automation, USA, pp. 65–71 (1999)Google Scholar
  10. 10.
    Graf, C., Hartl, A., Rofer, T., Laue, T.: A robust closed-loop gait for the standard platform league humanoid. In: Proc. of the 4th Workshop on Humanoid Soccer Robots in Conjunction with IEEE-RAS Int. Conf. on Humanoid Robots, pp. 30–37 (2009)Google Scholar
  11. 11.
    B-Human team. B-human:Team report and code release 2011, Chapter 5 (EB/OL) (Feburary 2012), (accessed)

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Juan Liu
    • 1
  • Zhiwei Liang
    • 1
  • Ping Shen
    • 1
  • Yue Hao
    • 1
  • Hecheng Zhao
    • 1
  1. 1.College of AutomationNanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations