Towards Quantifying Interaction Networks in a Football Match

  • Oliver M. Cliff
  • Joseph T. Lizier
  • X. Rosalind Wang
  • Peter Wang
  • Oliver Obst
  • Mikhail Prokopenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8371)


We present several novel methods quantifying dynamic interactions in simulated football games. These interactions are captured in directed networks that represent significant coupled dynamics, detected information-theoretically. The model-free approach measures information dynamics of both pair-wise players’ interactions as well as local tactical contests produced during RoboCup 2D Simulation League games. This analysis involves computation of information transfer and storage, relating the information transfer to responsiveness of the players and the team, and the information storage within the team to the team’s rigidity and lack of tactical flexibility. The resultant directed networks (interaction diagrams) and the measures of responsiveness and rigidity reveal implicit interactions, across teams, that may be delayed and/or long-ranged. The analysis was verified with a number of experiments, identifying the zones of the most intense competition and the extent of interactions.


Information Transfer Relative Responsiveness Transfer Entropy Interaction Diagram Football Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vilar, L., Araujo, D., Davids, K., Bar-Yam, Y.: Science of winning soccer: Emergent pattern-forming dynamics in association football. Journal of Systems Science and Complexity 26, 73–84 (2013)CrossRefGoogle Scholar
  2. 2.
    Grabiner, D.J.: The Sabermetric Manifesto, The Baseball ArchiveGoogle Scholar
  3. 3.
    Fewell, J., Armbruster, D., Ingraham, J., Petersen, A., Waters, J.: Basketball teams as strategic networks. PLoS One 7(11), e47445 (2012)Google Scholar
  4. 4.
    Noda, I., Stone, P.: The RoboCup Soccer Server and CMUnited Clients: Implemented Infrastructure for MAS Research. Autonomous Agents and Multi-Agent Systems 7(1-2), 101–120 (2003)CrossRefGoogle Scholar
  5. 5.
    Riley, P., Stone, P., Veloso, M.: Layered disclosure: Revealing agents’ internals. In: Castelfranchi, C., Lespérance, Y. (eds.) Intelligent Agents VII. LNCS (LNAI), vol. 1986, pp. 61–72. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    Stone, P., Riley, P., Veloso, M.: Defining and using ideal teammate and opponent models. In: Proc. of the 12th Annual Conf. on Innovative Applications of Artificial Intelligence (2000)Google Scholar
  7. 7.
    Butler, M., Prokopenko, M., Howard, T.: Flexible synchronisation within RoboCup environment: A comparative analysis. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 119–128. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Reis, L.P., Lau, N., Oliveira, E.C.: Situation based strategic positioning for coordinating a team of homogeneous agents. In: Hannebauer, M., Wendler, J., Pagello, E. (eds.) Reactivity and Deliberation in MAS. LNCS (LNAI), vol. 2103, pp. 175–197. Springer, Heidelberg (2001)Google Scholar
  9. 9.
    Prokopenko, M., Wang, P.: Relating the entropy of joint beliefs to multi-agent coordination. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 367–374. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Prokopenko, M., Wang, P.: Evaluating team performance at the edge of chaos. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 89–101. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Prokopenko, M., Obst, O., Wang, P., Held, J.: Gliders2012: Tactics with action-dependent evaluation functions. In: RoboCup 2012 Symposium and Competitions: Team Description Papers, Mexico City, Mexico (June 2012)Google Scholar
  12. 12.
    Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Local information transfer as a spatiotemporal filter for complex systems. Physical Review E 77(2), 026110 (2008)Google Scholar
  13. 13.
    Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Information modification and particle collisions in distributed computation. Chaos 20(3), 037109 (2010)Google Scholar
  14. 14.
    Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Coherent information structure in complex computation. Theory in Biosciences 131, 193–203 (2012)CrossRefGoogle Scholar
  15. 15.
    Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Local measures of information storage in complex distributed computation. Information Sciences 208, 39–54 (2012)CrossRefGoogle Scholar
  16. 16.
    Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85(2), 461–464 (2000)CrossRefGoogle Scholar
  17. 17.
    Wang, X.R., Miller, J.M., Lizier, J.T., Prokopenko, M., Rossi, L.F.: Quantifying and tracing information cascades in swarms. PLoS One 7(7), e40084 (2012)Google Scholar
  18. 18.
    Marian, S., Luca, D., Sarac, B., Cotarlea, O.: Oxsy 2011 team description paper. In: RoboCup 2011 Symposium and Competitions: Team Description Papers, Istanbul (2011)Google Scholar
  19. 19.
    Tavafi, A., Nozari, N., Vatani, R., Yousefi, M.R., Rahmatinia, S., Pirdir, P.: MarliK 2012 Soccer 2D Simulation Team Description Paper. In: RoboCup 2012 Symposium and Competitions: Team Description Papers, Mexico City, Mexico (June 2012)Google Scholar
  20. 20.
    Prokopenko, M., Obst, O., Wang, P., Budden, D., Cliff, O.: Gliders2013: Tactical Analysis with Information Dynamics. In: RoboCup 2013 Symposium and Competitions: Team Description Papers, Eindhoven (June 2013)Google Scholar
  21. 21.
    Chen, M., Dorer, K., Foroughi, E., Heintz, F., Huang, Z., Kapetanakis, S., Kostiadis, K., Kummeneje, J., Murray, J., Noda, I., Obst, O., Riley, P., Steffens, T., Wang, Y., Yin, X.: Users Manual: RoboCup Soccer Server — for Soccer Server version 7.07 and Later (February 2003)Google Scholar
  22. 22.
    Akiyama, H.: Agent2D Base Code (2010),
  23. 23.
    Moore, E., Obst, O., Prokopenko, M., Wang, P., Held, J.: Gliders2012: Development and competition results. CoRR abs/1211.3882 (2012)Google Scholar
  24. 24.
    Obst, O., Boedecker, J.: Flexible coordination of multiagent team behavior using HTN planning. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 521–528. Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Oliver M. Cliff
    • 1
  • Joseph T. Lizier
    • 1
  • X. Rosalind Wang
    • 1
  • Peter Wang
    • 1
  • Oliver Obst
    • 1
  • Mikhail Prokopenko
    • 1
  1. 1.Adaptive SystemsCSIRO Information and Communication Technologies CentreEppingAustralia

Personalised recommendations