Skip to main content

On Coloring Resilient Graphs

  • Conference paper
Mathematical Foundations of Computer Science 2014 (MFCS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8635))

  • 1176 Accesses

Abstract

We introduce a new notion of resilience for constraint satisfaction problems, with the goal of more precisely determining the boundary between NP-hardness and the existence of efficient algorithms for resilient instances. In particular, we study r-resiliently k-colorable graphs, which are those k-colorable graphs that remain k-colorable even after the addition of any r new edges. We prove lower bounds on the NP-hardness of coloring resiliently colorable graphs, and provide an algorithm that colors sufficiently resilient graphs. We also analyze the corresponding notion of resilience for k-SAT. This notion of resilience suggests an array of open questions for graph coloring and other combinatorial problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, M., Ben-David, S.: Clusterability: A theoretical study. Journal of Machine Learning Research - Proceedings Track 5, 1–8 (2009)

    Google Scholar 

  2. Arora, S., Ge, R.: New tools for graph coloring. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011. LNCS, vol. 6845, pp. 1–12. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Awasthi, P., Blum, A., Sheffet, O.: Center-based clustering under perturbation stability. Inf. Process. Lett. 112(1-2), 49–54 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berger, B., Rompel, J.: A better performance guarantee for approximate graph coloring. Algorithmica 5(3), 459–466 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bilu, Y., Linial, N.: Are stable instances easy? Combinatorics, Probability & Computing 21(5), 643–660 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blum, A.: New approximation algorithms for graph coloring. J. ACM 41(3), 470–516 (1994)

    Article  MATH  Google Scholar 

  7. Cai, L.: Parameterized complexity of vertex colouring. Discrete Applied Mathematics 127(3), 415–429 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dailey, D.P.: Uniqueness of colorability and colorability of planar 4-regular graphs are np-complete. Discrete Mathematics 30(3), 289–293 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dinur, I., Mossel, E., Regev, O.: Conditional hardness for approximate coloring. SIAM J. Comput. 39(3), 843–873 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eppstein, D., Bern, M.W., Hutchings, B.L.: Algorithms for coloring quadtrees. Algorithmica 32(1), 87–94 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: The complexity of near-optimal graph coloring. J. ACM 23(1), 43–49 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guruswami, V., Khanna, S.: On the hardness of 4-coloring a 3-colorable graph. SIAM J. Discrete Math. 18(1), 30–40 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Halldórsson, M.M.: A still better performance guarantee for approximate graph coloring. Inf. Process. Lett. 45(1), 19–23 (1993)

    Article  MATH  Google Scholar 

  14. Håstad, J.: Clique is hard to approximate within n 1 − ε. Acta Mathematica 182, 105–142 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hoàng, C.T., Maffray, F., Mechebbek, M.: A characterization of b-perfect graphs. Journal of Graph Theory 71(1), 95–122 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Huang, S.: Improved hardness of approximating chromatic number. CoRR, abs/1301.5216 (2013)

    Google Scholar 

  17. Kawarabayashi, K.I., Thorup, M.: Coloring 3-colorable graphs with o(n 1/5) colors. In: STACS, vol. 25, pp. 458–469 (2014)

    Google Scholar 

  18. Johnson, D.S.: Worst case behavior of graph coloring algorithms. In: Proc. 5th Southeastern Conf. on Comb., Graph Theory and Comput., pp. 513–527 (1974)

    Google Scholar 

  19. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103 (1972)

    Google Scholar 

  20. Khanna, S., Linial, N., Safra, S.: On the hardness of approximating the chromatic number. Combinatorica 20(3), 393–415 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Khot, S.: Improved inaproximability results for maxclique, chromatic number and approximate graph coloring. In: FOCS, pp. 600–609 (2001)

    Google Scholar 

  22. Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied Mathematics 126(2-3), 197–221 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Král’, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs without forbidden induced subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  24. Kumar, V.: Algorithms for constraint-satisfaction problems: A survey. AI Magazine 13(1), 32 (1992)

    Google Scholar 

  25. Kun, J., Powers, B., Reyzin, L.: Anti-coordination games and stable graph colorings. In: Vöcking, B. (ed.) SAGT 2013. LNCS, vol. 8146, pp. 122–133. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Mihalák, M., Schöngens, M., Šrámek, R., Widmayer, P.: On the complexity of the metric TSP under stability considerations. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 382–393. Springer, Heidelberg (2011)

    Google Scholar 

  27. Reyzin, L.: Data stability in clustering: A closer look. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012. LNCS, vol. 7568, pp. 184–198. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Wigderson, A.: Improving the performance guarantee for approximate graph coloring. J. ACM 30(4), 729–735 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing 3(1), 103–128 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kun, J., Reyzin, L. (2014). On Coloring Resilient Graphs. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44465-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44465-8_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44464-1

  • Online ISBN: 978-3-662-44465-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics