Skip to main content

An Efficient Quantum Algorithm for Finding Hidden Parabolic Subgroups in the General Linear Group

  • Conference paper
Mathematical Foundations of Computer Science 2014 (MFCS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8635))

  • 1171 Accesses

Abstract

In the theory of algebraic groups, parabolic subgroups form a crucial building block in the structural studies. In the case of general linear groups over a finite field \(\mathbb{F}_q\), given a sequence of positive integers n 1, …, n k , where n = n 1 + … + n k , a parabolic subgroup of parameter (n 1, …, n k ) in GL\(_n(\mathbb{F}_q)\) is a conjugate of the subgroup consisting of block lower triangular matrices where the ith block is of size n i . Our main result is a quantum algorithm of time polynomial in logq and n for solving the hidden subgroup problem in GL\(_n(\mathbb{F}_q)\), when the hidden subgroup is promised to be a parabolic subgroup. Our algorithm works with no prior knowledge of the parameter of the hidden parabolic subgroup. Prior to this work, such an efficient quantum algorithm was only known for minimal parabolic subgroups (Borel subgroups), for the case when q is not much smaller than n (G. Ivanyos: Quantum Inf. Comput., Vol. 12, pp. 661-669).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacon, D.: How a Clebsch-Gordan transform helps to solve the Heisenberg hidden subgroup problem. Quantum Inf. Comput. 8, 438–467 (2008)

    MathSciNet  Google Scholar 

  2. Bacon, D., Childs, A., van Dam, W.: From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups. In: Proc. 46th IEEE FOCS, pp. 469–478 (2005)

    Google Scholar 

  3. Berlekamp, E.R.: Algebraic coding theory. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  4. Berlekamp, E.R.: Factoring polynomials over large finite fields. Math. Comput. 24, 713–735 (1970)

    Article  MathSciNet  Google Scholar 

  5. Boneh, D., Lipton, R.J.: Quantum cryptanalysis of hidden linear functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 424–437. Springer, Heidelberg (1995)

    Google Scholar 

  6. Cantor, D.G., Zassenhaus, H.: A New Algorithm for Factoring Polynomials Over Finite Field. Math. Comput. 36, 587–592 (1981)

    MATH  MathSciNet  Google Scholar 

  7. Cheung, K., Mosca, M.: Decomposing finite abelian groups. Quantum Inf. Comput. 1, 26–32 (2001)

    MATH  MathSciNet  Google Scholar 

  8. Denney, A., Moore, C., Russell, A.: Finding conjugate stabilizer subgroups in PSL(2;q) and related problems. Quantum Inf. Comput. 10, 282–291 (2010)

    MATH  MathSciNet  Google Scholar 

  9. van Dam, W., Hallgren, S., Ip, L.: Quantum algorithms for some hidden shift problems. SIAM J. Comput. 36, 763–778 (2006)

    MATH  MathSciNet  Google Scholar 

  10. Ettinger, M., Hoyer, P., Knill, E.: The quantum query complexity of the hidden subgroup problem is polynomial. Inform. Proc. Lett. 91, 43–48 (2004)

    MATH  MathSciNet  Google Scholar 

  11. Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and orbit coset in quantum computing. In: Proc. 35th STOC, pp. 1–9 (2003)

    Google Scholar 

  12. Gavinsky, D.: Quantum solution to the hidden subgroup problem for poly-near-Hamiltonian groups. Quantum Inf. Comput. 4, 229–235 (2004)

    MATH  MathSciNet  Google Scholar 

  13. Gonçalves, D.N., Portugal, R., Cosme, C.M.M.: Solutions to the hidden subgroup problem on some metacyclic groups. In: Childs, A., Mosca, M. (eds.) TQC 2009. LNCS, vol. 5906, pp. 1–9. Springer, Heidelberg (2009)

    Google Scholar 

  14. Grigni, M., Schulman, L., Vazirani, M., Vazirani, U.: Quantum mechanical algorithms for the nonabelian Hidden Subgroup Problem. In: Proc. 33rd ACM STOC, pp. 68–74 (2001)

    Google Scholar 

  15. Hallgren, S., Russell, A., Ta-Shma, A.: Normal subgroup reconstruction and quantum computation using group representations. SIAM J. Comp. 32, 916–934 (2003)

    MATH  MathSciNet  Google Scholar 

  16. Inui, Y., Le Gall, F.: Efficient quantum algorithms for the hidden subgroup problem over semi-direct product groups. Quantum Inf. Comput. 7, 559–570 (2007)

    MATH  MathSciNet  Google Scholar 

  17. Ivanyos, G.: Finding hidden Borel subgroups of the general linear group. Quantum Inf. Comput. 12, 661–669 (2012)

    MATH  MathSciNet  Google Scholar 

  18. Ivanyos, G., Magniez, F., Santha, M.: Efficient quantum algorithms for some instances of the non-Abelian hidden subgroup problem. Int. J. Found. Comp. Sci. 15, 723–739 (2003)

    MathSciNet  Google Scholar 

  19. Ivanyos, G., Sanselme, L., Santha, M.: An efficient quantum algorithm for the hidden subgroup problem in nil-2 groups. Algorithmica 63(1-2), 91–116 (2012)

    MathSciNet  Google Scholar 

  20. Jozsa, R.: Quantum factoring, discrete logarithms, and the hidden subgroup problem. Computing in Science and Engineering 3, 34–43 (2001)

    Google Scholar 

  21. Yu. Kitaev, A.: Quantum measurements and the Abelian Stabilizer Problem, Technical report arXiv:quant-ph/9511026 (1995)

    Google Scholar 

  22. Moore, C., Rockmore, D., Russell, A., Schulman, L.: The power of basis selection in Fourier sampling: Hidden subgroup problems in affine groups. In: Proc. 15th ACM-SIAM SODA, pp. 1106–1115 (2004)

    Google Scholar 

  23. Regev, O.: Quantum computation and lattice problems. SIAM J. Comput. 33, 738–760 (2004)

    MATH  MathSciNet  Google Scholar 

  24. Shor, P.: Algorithms for quantum computation: Discrete logarithm and factoring. SIAM J. Comput. 26, 1484–1509 (1997)

    MATH  MathSciNet  Google Scholar 

  25. Springer, T.A.: Linear Algebraic groups, 2nd edn. Progress in mathematics, vol. 9. Birkhäuser, Basel (1998)

    MATH  Google Scholar 

  26. Watrous, J.: Quantum algorithms for solvable groups. In: Proc. 33rd ACM STOC, pp. 60–67 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Decker, T., Ivanyos, G., Kulkarni, R., Qiao, Y., Santha, M. (2014). An Efficient Quantum Algorithm for Finding Hidden Parabolic Subgroups in the General Linear Group. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds) Mathematical Foundations of Computer Science 2014. MFCS 2014. Lecture Notes in Computer Science, vol 8635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44465-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44465-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44464-1

  • Online ISBN: 978-3-662-44465-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics