Skip to main content

Evaluation of Class Binarization and Feature Selection in Tear Film Classification using TOPSIS

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 449))

Included in the following conference series:

Abstract

Dry eye syndrome is a prevalent disease which affects a wide range of the population and can be diagnosed through an automatic technique for tear film lipid layer classification. In this setting, class binarization techniques and feature selection are powerful methods to reduce the size of the output and input spaces, respectively. These approaches are expected to reduce the complexity of the multi-class problem of tear film classification. In previous researches, several machine learning algorithms have been tried and only evaluated in terms of accuracy. Up to now, the evaluation of artificial neural networks (ANNs) has not been done in depth. This paper presents a methodology to evaluate the classification performance of ANNs using several measures. For this purpose, the multiple-criteria decision-making method called TOPSIS has been used. The results obtained demonstrate that class binarization and feature selection improves the performance of ANNs on tear film classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolff, E.: Anatomy of the Eye and Orbit, 4th edn. H. K. Lewis and Co., London (1954)

    Google Scholar 

  2. Korb, D.: The Tear Film: Structure, Function and Clinical Examination. Butterworth-Heinemann, Oxford (2002)

    Google Scholar 

  3. Nichols, K., Nichols, J., Mitchell, G.: The lack of association between signs and symptons in patients with dry eye disease. Cornea 23, 762–770 (2004)

    Article  Google Scholar 

  4. Bron, A., Tiffany, J., Gouveia, S., Yokoi, N., Voon, L.: Functional aspects of the tear film lipid layer. Exp. Eye Res. 78, 347–360 (2004)

    Article  Google Scholar 

  5. Rolando, M., Iester, M., Marcrí, A., Calabria, G.: Low spatial-contrast sensitivity in dry eyes. Cornea 17, 376–379 (1998)

    Article  Google Scholar 

  6. Rolando, M., Refojo, M., Kenyon, K.: Increased tear evaporation in eyes with keratoconjunctivitis sicca. Arch. Ophthalmol. 101, 557–558 (1983)

    Article  Google Scholar 

  7. Lemp, M., Baudouin, C., Baum, J., Dogru, M., Foulks, G., Kinoshita, S., Laibson, P., McCulley, J., Murube, J., Pfugfelder, S., Rolando, M., Toda, I.: The definition and classification of dry eye disease: report of the definition and classification subcommittee of the internation dry eye workshop (2007). Ocul. Surf. 5, 75–92 (2007)

    Article  Google Scholar 

  8. Guillon, J.: Non-invasive tearscope plus routine for contact lens fitting. Cont. Lens Ant. Eye 21(Suppl 1), 31–40 (1998)

    Article  Google Scholar 

  9. Goto, E., Yagi, Y., Kaido, M., Matsumoto, Y., Konomi, K., Tsubota, K.: Improved functional visual acuity after punctual occlusion in dry eye patients. Am. J. Ophthalmol. 135, 704–705 (2003)

    Article  Google Scholar 

  10. King-Smith, P., Fink, B., Fogt, N.: Three interferometric methods for measuring the thickness of layers of the tear film. Optom. Vis. Sci. 76, 19–32 (1999)

    Article  Google Scholar 

  11. Calvo, D., Mosquera, A., Penas, M., García-Resúa, C., Remeseiro, B.: Color texture analysis for tear film classification: a preliminary study. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010, Part II. LNCS, vol. 6112, pp. 388–397. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Ramos, L., Penas, M., Remeseiro, B., Mosquera, A., Barreira, N., Yebra-Pimentel, E.: Texture and color analysis for the automatic classification of the eye lipid layer. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part II. LNCS, vol. 6692, pp. 66–73. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. García-Resúa, C., Giráldez-Fernández, M., Penedo, M., Calvo, D., Penas, M., Yebra-Pimentel, E.: New software application for clarifying tear film lipid layer patterns. Cornea 32, 538–546 (2012)

    Article  Google Scholar 

  14. Remeseiro, B., Ramos, L., Penas, M., Martínez, E., Penedo, M., Mosquera, A.: Colour texture analysis for classifying the tear film lipid layer: a comparative study. In: International Conference on Digital Image Computing: Techniques and Applications (DICTA), Noosa, Australia, pp. 268–273 (2011)

    Google Scholar 

  15. Remeseiro, B., Penas, M., Mosquera, A., Novo, J., Penedo, M., Yebra-Pimentel, E.: Statistical comparison of classifiers applied to the interferential tear film lipid layer automatic classification. Comput. Math. Methods Med. 2012 (2012)

    Google Scholar 

  16. Fürnkranz, J.: Pairwise classification as an ensemble technique. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 97–110. Springer, Heidelberg (2002)

    Google Scholar 

  17. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. The Journal of Machine Learning Research 5, 101–141 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Dietterich, T., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1995)

    MATH  Google Scholar 

  19. Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass problems. Mach. Learn. 47, 201–233 (2002)

    Article  MATH  Google Scholar 

  20. Furnkranz, J.: Round robin classification. J. Mach. Learn. Res. 2, 721–747 (2002)

    MathSciNet  Google Scholar 

  21. Hsu, C., Lin, C.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13, 415–425 (2002)

    Article  Google Scholar 

  22. Allwein, E., Schapire, R., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1, 113–141 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature Extraction: Foundations and Applications. Springer, Heidelberg (2006)

    Book  Google Scholar 

  24. Loughrey, J., Cunningham, P.: Overfitting in wrapper-based feature subset selection: the harder you try the worse it gets. In: Bramer, M., Coenen, F., Allen, T. (eds.) Research and Development in Intelligent Systems XXI, pp. 33–43. Springer, London (2005)

    Chapter  Google Scholar 

  25. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: On the behavior of feature selection methods dealing with noise and relevance over synthetic scenarios. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 1530–1537. IEEE (2011)

    Google Scholar 

  26. Bolón-Canedo, V., Peteiro-Barral, D., Alonso-Betanzos, A., Guijarro-Berdiñas, B., Sánchez-Maroño, N.: Scalability analysis of ANN training algorithms with feature selection. In: Lozano, J.A., Gámez, J.A., Moreno, J.A. (eds.) CAEPIA 2011. LNCS, vol. 7023, pp. 84–93. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Hall, M.: Correlation-based feature selection for machine learning. Ph.D. thesis, The University of Waikato (1999)

    Google Scholar 

  28. Dash, M., Liu, H.: Consistency-based search in feature selection. Artif. Intell. 151, 155–176 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhao, Z., Liu, H.: Searching for interacting features. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, pp. 1156–1161. Morgan Kaufmann Publishers Inc. (2007)

    Google Scholar 

  30. Press, W., Flannery, B., Teukolsky, S., Vetterling, W., et al.: Numerical Recipes, vol. 547. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  31. Kou, G., Lu, Y., Peng, Y., Shi, Y.: Evaluation of Classification Algorithms using MCDM and Rank Correlation. Int. J. Inf. Technol. Decis. Making (IJITDM) 11, 197–225 (2012)

    Article  Google Scholar 

  32. Hwang, C., Yoon, K.: Multiple Attribute Decision Making: Methods and Applications: A State-of-the-Art Survey, vol. 13. Springer, New York (1981)

    Book  MATH  Google Scholar 

  33. Opricovic, S., Tzeng, G.: Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156, 445–455 (2004)

    Article  MATH  Google Scholar 

  34. Olson, D.: Comparison of weights in TOPSIS models. Math. Comput. Modell. 40, 721–727 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Remeseiro, B.: VOPTICAL_I1, VARPA optical dataset annotated by optometrists from the Faculty of Optics and Optometry, University of Santiago de Compostela (Spain) (2012). http://www.varpa.es/voptical_I1.html. Accessed May 2013

  36. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man, Cybern. 3, 610–621 (1973)

    Article  Google Scholar 

  37. McLaren, K.: The development of the CIE 1976 (L*a*b) uniform colour-space and colour-difference formula. J. Soc. Dyers Colour. 92(9), 338–341 (1976)

    Article  Google Scholar 

  38. Fernandez Caballero, J., Martínez, F., Hervás, C., Gutiérrez, P.: Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks. IEEE Trans. Neural Netw. 21, 750–770 (2010)

    Article  Google Scholar 

  39. Hecht-Nielsen, R.: Neurocomputing. Addison-Wesley, Reading (1990)

    Google Scholar 

Download references

Acknowledgements

This research has been partially funded by the Secretaría de Estado de Investigación of the Spanish Government and FEDER funds of the European Union through the research projects PI10/00578, TIN2009-10748 and TIN2011-25476; and by the Consellería de Industria of the Xunta de Galicia through the research project CN2011/007. Beatriz Remeseiro and Diego Peteiro-Barral acknowledge the support of Xunta de Galicia under Plan I2C Grant Program.

We would also like to thank the Escuela de Óptica y Optometría of the Universidade de Santiago de Compostela for providing us with the annotated image dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Remeseiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Méndez, R., Remeseiro, B., Peteiro-Barral, D., Penedo, M.G. (2014). Evaluation of Class Binarization and Feature Selection in Tear Film Classification using TOPSIS. In: Filipe, J., Fred, A. (eds) Agents and Artificial Intelligence. ICAART 2013. Communications in Computer and Information Science, vol 449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44440-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44440-5_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44439-9

  • Online ISBN: 978-3-662-44440-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics