Skip to main content

Hand Gesture Recognition for Human Computer Interaction: A Comparative Study of Different Image Features

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 449))

Included in the following conference series:

Abstract

Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. In this study we try to identify hand features that, isolated, respond better in various situations in human-computer interaction. The extracted features are used to train a set of classifiers with the help of RapidMiner in order to find the best learner. A dataset with our own gesture vocabulary consisted of 10 gestures, recorded from 20 users was created for later processing. Experimental results show that the radial signature and the centroid distance are the features that when used separately obtain better results, with an accuracy of 91 % and 90,1 % respectively obtained with a Neural Network classifier. These to methods have also the advantage of being simple in terms of computational complexity, which make them good candidates for real-time hand gesture recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maung, T.H.H.: Real-time hand tracking and gesture recognition system using neural networks. Proc. World Acad. Sci. Eng. Technol. 50, 466–470 (2009)

    Google Scholar 

  2. Trigueiros, P., Ribeiro, F., Reis, L.P.: A comparison of machine learning algorithms applied to hand gesture recognition. In: 7ª Conferência Ibérica de Sistemas e Tecnologias de Informação, Madrid, Spain (2012)

    Google Scholar 

  3. Bourennane, S., Fossati, C.: Comparison of shape descriptors for hand posture recognition in video. Signal Image Video Process. 6(1), 147–157 (2010)

    Article  Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: International Conference on Computer Vision and Pattern Recognition, Grenoble, France (2005)

    Google Scholar 

  5. Ong, S., Ranganath, S.: Automatic sign language analysis: a survey and the future beyond lexical meaning. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 873–891 (2005)

    Article  Google Scholar 

  6. Conseil, S., Bourenname, S., Martin, L.: Comparison of Fourier descriptors and Hu moments for hand posture recognition. In: 15th European Signal Processing Conference (EUSIPCO), Poznan, Poland, pp. 1960–1964 (2007)

    Google Scholar 

  7. Mitra, S., Acharya, T.: Gesture recognition: a survey. IEEE Trans. Syst. Man Cybern. 37, 311–324 (2007)

    Article  Google Scholar 

  8. Murthy, G.R.S., Jadon, R.S.: A review of vision based hand gestures recognition. Int. J. Inf. Technol. Knowl. Manag. 2(2), 405–410 (2009)

    Google Scholar 

  9. Wang, C.-C., Wang, K.-C.: Hand posture recognition using Adaboost with SIFT for human robot interaction. In: Proceedings of the International Conference on Advanced Robotics (ICAR’07), Jeju, Korea (2008)

    Google Scholar 

  10. Barczak, A.L.C., et al.: Analysis of feature invariance and discrimination for hand images: Fourier descriptors versus moment invariants. In: International Conference Image and Vision Computing, New Zealand (2011)

    Google Scholar 

  11. Triesch, J., von der Malsburg, C.: Robust classification of hand postures against complex backgrounds. In: International Conference on Automatic Face and Gesture Recognition, Killington, Vermont, USA (1996)

    Google Scholar 

  12. Huynh, D.Q.: Evaluation of Three local descriptors on low resolution images for robot navigation. In: Image and Vision Computing (IVCNZ ’09), Wellington, pp. 113–118 (2009)

    Google Scholar 

  13. Fang, Y., et al.: Hand posture recognition with co-training. In: 19th International Conference on Pattern Recognition (ICPR ’08), Tampa, FL (2008)

    Google Scholar 

  14. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, ACM, Madison, Wisconsin, USA, pp. 92–100 (1998)

    Google Scholar 

  15. Tara, R.Y., Santosa, P.I., Adji, T.B.: Sign language recognition in robot teleoperation using centroid distance Fourier descriptors. Int. J. Comput. Appl. 48(2), 8–12 (2012)

    Google Scholar 

  16. Faria, B.M., Lau, N., Reis, L.P.: Classification of facial expressions using data mining and machine learning algorithms. In: 4ª Conferência Ibérica de Sistemas e Tecnologias de Informação, Póvoa de Varim, Portugal (2009)

    Google Scholar 

  17. Gillian, N.E.: Gesture recognition for musician computer interaction, in Music Department 2011, Faculty of Arts, Humanities and Social Sciences, Belfast, p. 206 (2011)

    Google Scholar 

  18. Faria, B.M., et al.: Machine learning algorithms applied to the classification of robotic soccer formations ans opponent teams. In: IEEE Conference on Cybernetics and Intelligent Systems (CIS), Singapore, pp. 344–349 (2010)

    Google Scholar 

  19. Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10(2), 1154–1175 (2010)

    Article  Google Scholar 

  20. Maldonado-Báscon, S., et al.: Road-Sign detection and recognition based on support vector machines. IEEE Trans. Intell. Transp. Syst. 8, 264–278 (2007)

    Article  Google Scholar 

  21. Vicen-Bueno, R., et al.: Complexity Reduction in Neural Networks Applied to Traffic Sign Recognition Tasks (2004)

    Google Scholar 

  22. Witten, I.H., Frank, E., Hall, M.A.: Data Mining - Pratical Machine Learning Tools and Techniques, 3rd edn. Elsevier, Amsterdam (2011)

    Google Scholar 

  23. Snyder, W.E., Qi, H.: Machine Vision. Cambridge University Press, New York (2004)

    MATH  Google Scholar 

  24. Stephan, J.J., Khudayer, S.: Gesture recognition for human-computer interaction (HCI). Int. J. Adv. Comput. Technol. 2(4), 30–35 (2010)

    Google Scholar 

  25. Ben-Hur, A., Weston, J.: A user’s guide to support vector machines. In: Carugo, O., Eisenhaber, F. (eds.) Data Mining Techniques for the Life Sciences, pp. 223–239. Humana Press, Totowa (2008)

    Google Scholar 

  26. Ke, W., et al.: Real-Time Hand Gesture Recognition for Service Robot, pp. 976–979 (2010)

    Google Scholar 

  27. Lockton, R.: Hand Gesture Recognition Using Computer Vision. Oxford University, Oxford (2002)

    Google Scholar 

  28. Roth, M., et al.: Computer vision for interactive computer graphics. IEEE Comput. Graph. Appl. 18, 42–53 (1998)

    Google Scholar 

  29. Freeman, W.T., Roth, M.: Orientation Histograms for Hand Gesture Recognition. Mitsubishi Electric Research Laboratories, Cambridge Research Center (1994)

    Google Scholar 

  30. Dalal, Navneet, Triggs, Bill, Schmid, Cordelia: Human detection using oriented histograms of flow and appearance. In: Leonardis, Aleš, Bischof, Horst, Pinz, Axel (eds.) ECCV 2006. LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  31. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  32. Kaaniche, M.-B., Bremond, F.: Tracking HOG descriptors for gesture recognition. In: IEEE International Conference on Advanced Video and Signal-Based Surveillance. IEEE Computer Society Press (2009)

    Google Scholar 

  33. Ding, Y., Pang, H., Wu, X.: Static hand-gesture recognition using HOG and improved LBP features. Int. J. Digit. Content Technol. Appl. 5(11), 236–243 (2011)

    Article  Google Scholar 

  34. Lu, W.-L., Little, J.J.: Simultaneous tracking and action recognition using the PCA-HOG descriptor. In: Proceedings of the 3rd Canadian Conference on Computer and Robot Vision, p. 6. IEEE Computer Society (2006)

    Google Scholar 

  35. Ojala, T., PeitiKainen, M., Maenpã, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  36. Hruz, M., Trojanova, J., Zelezny, M.: Local binary pattern based features for sign language recognition. Pattern Recogn. Image Anal. 21(3), 398–401 (2011)

    Article  Google Scholar 

  37. Unay, D., et al.: Robustness of local binary patterns in brain MR image analysis. In: 29th Annual Conference of the IEEE EMBS, Lyon, France. IEEE (2007)

    Google Scholar 

  38. PietiKäinen, M., et al.: Computer Vision Using Local Binary Patterns, vol. 40. Springer, London (2011)

    Google Scholar 

  39. Pietikainen, M., Ojala, T., Xu, Z.: Rotation-Invariant Texture Classification using Feature Distributions. Pattern Recogn. 33, 43–52 (2000)

    Article  Google Scholar 

  40. Treiber, M.: An Introduction to Object Recognition. Springer, London (2010)

    Book  MATH  Google Scholar 

  41. Zhang, D., Lu, G.: A comparative study of Fourier descriptors for shape representation and retrieval. In: Proceedings of 5th Asian Conference on Computer Vision (ACCV). Springer, Melbourne, Australia (2002)

    Google Scholar 

  42. Shih, F.Y.: Image Processing and Pattern Recognition: Fundamentals and Techniques. Wiley, New York (2008)

    Google Scholar 

  43. Shi, J., Tomasi, C.: Good features to track. In: International Conference on Computer Vision and Pattern Recognition, pp. 593–600. Springer, Seattle (1994)

    Google Scholar 

  44. Harris, C., Stephens, M.: A combined corner and edge detector. In: The Fourth Alvey Vision Conference (1988)

    Google Scholar 

  45. Camastra, F., Vinciarelli, A.: Machine Learning for Audio, Image and Video Analysis. Springer, London (2008)

    Book  MATH  Google Scholar 

  46. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2004)

    Google Scholar 

  47. Bradski, G., Kaehler, A., (eds.): Learning OpenCV: Computer Vision with the OpenCV library. O’Reilly Media (2008)

    Google Scholar 

  48. OpenNI: The standard framework for 3D sensing (2013). http://www.openni.org/

  49. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)

    Article  Google Scholar 

  50. Jiang, Y.-G., Ngo, C.-W., Yang, J.: Towards optimal bag-of-features for object categorization and semantic video retrieval. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 494–501. ACM, Amsterdam (2007)

    Google Scholar 

  51. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178. IEEE Computer Society (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Trigueiros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trigueiros, P., Ribeiro, F., Reis, L.P. (2014). Hand Gesture Recognition for Human Computer Interaction: A Comparative Study of Different Image Features. In: Filipe, J., Fred, A. (eds) Agents and Artificial Intelligence. ICAART 2013. Communications in Computer and Information Science, vol 449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44440-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44440-5_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44439-9

  • Online ISBN: 978-3-662-44440-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics