Advertisement

Formation Channels for Blue Straggler Stars

  • Melvyn B. DaviesEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 413)

Abstract

In this chapter we consider two formation channels for blue straggler stars: (1) the merger of two single stars via a collision, and (2) those produced via mass transfer within a binary. We review how computer simulations show that stellar collisions are likely to lead to relatively little mass loss and are thus effective in producing a young population of more-massive stars. The number of blue straggler stars produced by collisions will tend to increase with cluster mass. We review how the current population of blue straggler stars produced from primordial binaries decreases with increasing cluster mass. This is because exchange encounters with third, single stars in the most massive clusters tend to reduce the fraction of binaries containing a primary close to the current turn-off mass. Rather, their primaries tend to be somewhat more massive and have evolved off the main sequence, filling their Roche lobes in the past, often converting their secondaries into blue straggler stars (but more than 1 Gyr or so ago and thus they are no longer visible today as blue straggler stars).

Keywords

Globular Cluster Main Sequence Main Sequence Star Roche Lobe Asymptotic Giant Branch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This book is the result of a meeting held at ESO, Chile. I thank the local organisers for their hospitality. I thank Christian Knigge for pointing out the importance of stellar evolution when considering the evolution of a population of binaries within a stellar cluster.

References

  1. Bacon, D., Sigurdsson, S., Davies, M. B.: MNRAS 281, 830 (1996)ADSCrossRefGoogle Scholar
  2. Benz, W., Hills, J. G.: ApJ 323, 614 (1987)ADSCrossRefGoogle Scholar
  3. Benz, W., Hills, J. G.: ApJ 389, 546 (1992)ADSCrossRefGoogle Scholar
  4. Carney, B. W., Latham, D. W., Laird, J. B., Grant, C. E., Morse, J. A.: AJ 122, 3419 (2001)ADSCrossRefGoogle Scholar
  5. Davies, M. B., Benz, W., Hills, J. G.: ApJ 381, 449 (1991)ADSCrossRefGoogle Scholar
  6. Davies, M. B., Benz, W., Hills, J. G.: ApJ 411, 285 (1993)ADSCrossRefGoogle Scholar
  7. Davies, M. B., Benz, W., Hills, J. G.: ApJ 424, 870 (1994)ADSCrossRefGoogle Scholar
  8. Davies, M. B., Hansen, B. M. S.: MNRAS 301, 15 (1998)ADSCrossRefGoogle Scholar
  9. Davies, M. B., Piotto, G., de Angeli, F.: MNRAS 349, 129 (2004)ADSCrossRefGoogle Scholar
  10. de Marchi, F., de Angeli, F., Piotto, G., Carraro, G., Davies, M. B.: A&A 459, 489 (2006)ADSCrossRefGoogle Scholar
  11. Eggleton, P. P., Fitchett, M. J., Tout, C. A.: ApJ 347, 998 (1989)ADSCrossRefGoogle Scholar
  12. Fabian, A. C., Pringle, J. E., Rees, M. J.: MNRAS 172, 15P (1975)ADSCrossRefGoogle Scholar
  13. Ferraro, F. R., Beccari, G., Dalessandro, E., et al.: Nature 462, 1028 (2009)ADSCrossRefGoogle Scholar
  14. Glebbeek, E., Pols, O. R.: A&A 488, 1017 (2008)ADSCrossRefGoogle Scholar
  15. Glebbeek, E., Pols, O. R., Hurley, J. R.: A&A 488, 1007 (2008)ADSCrossRefGoogle Scholar
  16. Heggie, D. C.: MNRAS 173, 729 (1975)ADSCrossRefGoogle Scholar
  17. Hut, P., McMillan, S., Goodman, J., et al.: PASP 104, 981 (1992)ADSCrossRefGoogle Scholar
  18. Hut, P., McMillan, S., Romani, R. W.: ApJ 389, 527 (1992)ADSCrossRefGoogle Scholar
  19. Hut, P., Verbunt, F.: Nature 301, 587 (1983)ADSCrossRefGoogle Scholar
  20. Knigge, C., Leigh, N., Sills, A.: Nature 457, 288 (2009)ADSCrossRefGoogle Scholar
  21. Leigh, N., Knigge, C., Sills, A., et al.: MNRAS 428, 897 (2013)ADSCrossRefGoogle Scholar
  22. Leonard, P. J. T.: AJ 98, 217 (1989)ADSCrossRefGoogle Scholar
  23. Lombardi, Jr., J. C., Rasio, F. A., Shapiro, S. L.: ApJ 445, L117 (1995)ADSCrossRefGoogle Scholar
  24. Lombardi, Jr., J. C., Rasio, F. A., Shapiro, S. L.: ApJ 468, 797(1996)ADSCrossRefGoogle Scholar
  25. Lombardi, Jr., J. C., Warren, J. S., Rasio, F. A., Sills, A., Warren, A. R.: ApJ 568, 939 (2002)ADSCrossRefGoogle Scholar
  26. Mathieu, R. D., Geller, A. M.: Nature 462, 1032 (2009)ADSCrossRefGoogle Scholar
  27. McCrea, W. H.: MNRAS 128, 147 (1964)ADSCrossRefGoogle Scholar
  28. Milone, A. P., Piotto, G., Bedin, L. R., et al.: A&A 540, A16 (2012)ADSCrossRefGoogle Scholar
  29. Perets, H. B., Fabrycky, D. C.: ApJ 697, 1048 (2009)ADSCrossRefGoogle Scholar
  30. Piotto, G., De Angeli, F., King, I. R., et al.: ApJ 604, L109 (2004)ADSCrossRefGoogle Scholar
  31. Preston, G. W., Sneden, C.: AJ 120, 1014 (2000)ADSCrossRefGoogle Scholar
  32. Sandquist, E. L., Bolte, M., Hernquist, L.: ApJ 477, 335 (1997)ADSCrossRefGoogle Scholar
  33. Sigurdsson, S., Phinney, E. S.: ApJ 415, 631(1993)ADSCrossRefGoogle Scholar
  34. Sills, A., Adams, T., Davies, M. B.: MNRAS 358, 716 (2005)ADSCrossRefGoogle Scholar
  35. Sills, A., Adams, T., Davies, M. B., Bate, M. R.: MNRAS 332, 49 (2002)ADSCrossRefGoogle Scholar
  36. Sills, A., Faber, J. A., Lombardi, Jr., J. C., Rasio, F. A., Warren, A. R.: ApJ 548, 323 (2001)ADSCrossRefGoogle Scholar
  37. Sills, A., Glebbeek, E., Chatterjee, S., Rasio, F. A.: ApJ 777, 105 (2013)ADSCrossRefGoogle Scholar
  38. Sills, A., Karakas, A., Lattanzio, J.: ApJ 692, 1411 (2009)ADSCrossRefGoogle Scholar
  39. Sills, A., Lombardi, Jr., J. C., Bailyn, C. D., et al.: ApJ 487, 290 (1997)ADSCrossRefGoogle Scholar
  40. Sneden, C., Preston, G. W., Cowan, J. J.: ApJ 592, 504 (2003)ADSCrossRefGoogle Scholar
  41. Tanikawa, A., Fukushige, T.: PASJ 57, 155 (2005)ADSGoogle Scholar
  42. Vilhu, O.: A&A 109, 17 (1982)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations