Binary Evolution: Roche Lobe Overflow and Blue Stragglers

  • Natalia IvanovaEmail author
Part of the Astrophysics and Space Science Library book series (ASSL, volume 413)


One of the principal mechanisms that is responsible for the origin of blue stragglers is mass transfer that takes place while one of the binary companions overfills its Roche lobe. In this Chapter, we overview the theoretical understanding of mass transfer via Roche lobe overflow: classification, how both the donor and of the accretor respond to the mass transfer on different timescales (adiabatic response, equilibrium response, superadiabatic response, time-dependent response) for different types of their envelopes (convective and radiative). These responses, as well as the assumption on how liberal the process is, are discussed in terms of the stability of the ensuing mass transfer. The predictions of the theory of mass transfer via Roche lobe overflow are then briefly compared with the observed mass-transferring systems with both degenerate and non-degenerate donors. We conclude with the discussion which cases of mass transfer and which primordial binaries could be responsible for blue stragglers formation via Roche lobe overflow, as well as how this can be enhanced for blue stragglers formed in globular clusters


Mass Transfer Rate Globular Cluster Roche Lobe Convective Envelope Angular Momentum Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



N. Ivanova acknowledges support from NSERC Discovery and Canada Research Chairs programs.


  1. Begelman, M. C.: MNRAS 187, 237 (1979)ADSCrossRefGoogle Scholar
  2. Belczynski, K., Kalogera, V., Rasio, F. A. et al.: ApJS 174, 223 (2008)ADSCrossRefGoogle Scholar
  3. Christensen-Dalsgaard, J.: in Progress in Solar/Stellar Physics with Helio- and Asteroseismology, ASP Conf. 462, 503 (2012)Google Scholar
  4. Darwin, G. H.: Proc. Roy. Soc. London 29, 168 (1879)CrossRefGoogle Scholar
  5. Deloye, C. J., Bildsten, L.: ApJ 598, 1217 (2003)ADSCrossRefGoogle Scholar
  6. Demircan, O., Kahraman, G.: Ap&SS 181, 313 (1991)ADSCrossRefGoogle Scholar
  7. Eggleton, P. P.: MNRAS 151, 351 (1971)ADSCrossRefGoogle Scholar
  8. Eggleton, P. P.: MNRAS 156, 361 (1972)ADSCrossRefGoogle Scholar
  9. Eggleton, P. P.: MNRAS 163, 279 (1973)ADSCrossRefGoogle Scholar
  10. Eggleton, P. P.: ApJ 268, 368 (1983)ADSCrossRefGoogle Scholar
  11. Eggleton, P. P.: New Astronomy Reviews 44, 111 (2000)ADSCrossRefGoogle Scholar
  12. Eggleton, P. P.: Evolutionary Processes in Binary and Multiple Stars, Cambridge University Press (2006)CrossRefGoogle Scholar
  13. Eggleton, P. P.: Journal of Astronomy and Space Sciences 29, 145 (2012)ADSCrossRefGoogle Scholar
  14. Eggleton, P. P., Faulkner, J., Flannery, B. P.: A&A 23, 325 (1973)ADSGoogle Scholar
  15. Eggleton, P. P., Kisseleva-Eggleton, L.: Ap&SS 304, 75 (2006)ADSCrossRefGoogle Scholar
  16. Eggleton, P. P., Tout, C., Pols, O. R., et al.: STARS: A Stellar Evolution Code, Astrophysics Source Code Library (2011)Google Scholar
  17. Fabrycky, D., Tremaine, S.: ApJ 669, 1298 (2007)ADSCrossRefGoogle Scholar
  18. H. Ge, M. S. Hjellming, R. F. Webbink, X. Chen, Z. Han: ApJ 717, 724 (2010)ADSCrossRefGoogle Scholar
  19. Geier, S.: European Physical Journal Web of Conferences 43, 4001 (2013)CrossRefGoogle Scholar
  20. Glebbeek, E., Pols, O. R., Hurley, J. R.: A&A 488, 1007 (2008)ADSCrossRefGoogle Scholar
  21. Heinke, C. O., Ivanova, N., Engel, M. C., et al.: ApJ 768, 184 (2013)ADSCrossRefGoogle Scholar
  22. Hjellming, M. S., Webbink, R. F.: ApJ 318, 794 (1987)ADSCrossRefGoogle Scholar
  23. Hjellming, M. S., Taam, R. E.: ApJ 370, 709 (1991)ADSCrossRefGoogle Scholar
  24. Hurley, J. R., Tout, C. A., Pols, O. R.: MNRAS 329, 897 (2002)ADSCrossRefGoogle Scholar
  25. Hut, P.: A&A 92, 167 (1980)ADSzbMATHMathSciNetGoogle Scholar
  26. in’t Zand, J. J. M., Jonker, P. G., Markwardt, C.B.: A&A 465, 953 (2007)Google Scholar
  27. Innanen, K. A., Zheng, J. Q., Mikkola, S., Valtonen, M. J.: AJ 113, 1915 (1997)ADSCrossRefGoogle Scholar
  28. Ivanova, N.: DPhil Thesis (2003)Google Scholar
  29. Ivanova, N.: in Multiple Stars Across the H-R Diagram, ESO Symp., Springer-Verlag, p. 101 (2008)Google Scholar
  30. Ivanova, N., Podsiadlowski, P., Spruit, H.: MNRAS 334, 819 (2002)ADSCrossRefGoogle Scholar
  31. Ivanova, N., Taam, R.E.: ApJ 601, 1058 (2004)ADSCrossRefGoogle Scholar
  32. Ivanova, N., Justham, S., Chen, X., et al.: A&A Rev. 21, 59 (2013)ADSCrossRefGoogle Scholar
  33. Kippenhahn, R., Weigert, A.: ZAp 65, 251 (1967)ADSGoogle Scholar
  34. Kippenhahn, R., Weigert, A., Hofmeister, E.: Mth. Comp. Phys. 7, 129 (1967)Google Scholar
  35. Kozai, Y.: AJ 67, 591 (1962)ADSCrossRefMathSciNetGoogle Scholar
  36. Langer, N., Cantiello, M., Yoon, S.-C., et al.: in IAU Symposium 250, pp-167 (2008)Google Scholar
  37. Lauterborn, D.: A&A 7, 150 (1970)ADSGoogle Scholar
  38. Lombardi, Jr., J. C., Warren, J.S., Rasio, F. A., Sills, A., Warren, A. R.: ApJ 568, 939 (2002)ADSCrossRefGoogle Scholar
  39. Lombardi, Jr., J. C., Holtzman, W., Dooley, K. L., Gearity, K., Kalogera, V., Rasio, F. A.: ApJ 737, 49 (2011)ADSCrossRefGoogle Scholar
  40. Lubow, S. H., Shu, F. H.: ApJL 207, L53 (1976)ADSCrossRefGoogle Scholar
  41. Maxted, P. F. L., Anderson, D.., Burleigh, M. R., et al.: MNRAS 418, 1156 (2011)ADSCrossRefGoogle Scholar
  42. Nelson, C. A., Eggleton, P. P.: ApJ 552, 664 (2001)ADSCrossRefGoogle Scholar
  43. Nomoto, K., Nariai, K., Sugimoto, D.: PASJ 31, 287 (1979)ADSGoogle Scholar
  44. Packet, W.: A&A 102, 17 (1981)ADSGoogle Scholar
  45. Passy, J. C., Herwig, F., Paxton, B.: ApJ 760, 90 (2012)ADSCrossRefGoogle Scholar
  46. Passy, J.C., De Marco, O., Fryer, C.L., et al.: ApJ 744, 52 (2012)ADSCrossRefGoogle Scholar
  47. Pavlovskii, K., Ivanova, N.: CASCA meeting (2013)Google Scholar
  48. Pavlovskii, K., Ivanova, N.: in IAU Symposium 291, 468 (2013)ADSGoogle Scholar
  49. Pavlovskii, K., Ivanova, N.: in IAU Symposium, 290, 293 (2013)ADSGoogle Scholar
  50. Paxton, B., Bildsten, L., Dotter, A., et al.: ApJS 192, 3 (2011)ADSCrossRefGoogle Scholar
  51. Paxton, B., Cantiello, M., Arras, P., et al.: ApJS 208, 4 (2013)ADSCrossRefGoogle Scholar
  52. Podsiadlowski, P., Rappaport, S., Pfahl, E. D.: ApJ 565, 1107 (2002)ADSCrossRefGoogle Scholar
  53. Pols, O. R., Tout, C. A., Eggleton, P. P., Han, Z.: MNRAS 274, 964 (1995)ADSCrossRefGoogle Scholar
  54. Raymer, E.: MNRAS 427, 1702 (2012)ADSCrossRefGoogle Scholar
  55. Ricker, P. M., Taam, R. E.: ApJ 746, 74 (2012)ADSCrossRefGoogle Scholar
  56. Shu, F. H., Lubow, S. H., Anderson, L.: ApJ, 239, 937 (1980)ADSCrossRefGoogle Scholar
  57. Soberman, G. E., Phinney,, E. S., van den Heuvel, E. P. J.: A&A 327, 620 (1997)Google Scholar
  58. Stancliffe, R. J., Glebbeek, E.: MNRAS 389, 1828 (2008)ADSCrossRefGoogle Scholar
  59. Tout, C. A., Aarseth, S. J., Pols, O. R., Eggleton, P. P.: MNRAS 291, 732 (1997)ADSCrossRefGoogle Scholar
  60. van Rensbergen, W., De Greve, J.P., De Loore, C., Mennekens, N.: A&A 487, 1129 (2008)ADSCrossRefGoogle Scholar
  61. van Rensbergen, W., De Greve,J.P., Mennekens, N., Jansen, K., de Loore, C.: A&A,528, A16 (2011)Google Scholar
  62. Webbink, R.F.: in Stellar evolution and binaries, Cambridge University Press, p. 39 (1985)Google Scholar
  63. Woods, T.E., Ivanova, N.: ApJL 739, L48 (2011)ADSCrossRefGoogle Scholar
  64. Woods, T.E., Ivanova, N. , van der Sluys, M.V., Chaichenets, S. : ApJ 744, 12 (2012)ADSCrossRefGoogle Scholar
  65. Yukawa, H., Boffin, H. M. J., Matsuda, T.: MNRAS 292, 321 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.University of AlbertaEdmontonCanada

Personalised recommendations