Dynamical Processes in Globular Clusters

  • Stephen L. W. McMillanEmail author
Part of the Astrophysics and Space Science Library book series (ASSL, volume 413)


Globular clusters are among the most congested stellar systems in the Universe. Internal dynamical evolution drives them toward states of high central density, while simultaneously concentrating the most massive stars and binary systems in their cores. As a result, these clusters are expected to be sites of frequent close encounters and physical collisions between stars and binaries, making them efficient factories for the production of interesting and observable astrophysical exotica. I describe some elements of the competition among stellar dynamics, stellar evolution, and other processes that control globular cluster dynamics, with particular emphasis on pathways that may lead to the formation of blue stragglers.


Smooth Particle Hydrodynamic Massive Star Globular Cluster Smooth Particle Hydrodynamic Star Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aarseth, S. J.: Gravitational N-Body Simulations, Cambridge University Press (2003)Google Scholar
  2. Ahmad, A., Cohen, L.: J. Comp. Phys. 12, 289 (1973)Google Scholar
  3. Antonov, V. A.: Vestn. Leningr. Gros. Univ. 7, 135 (1962)ADSGoogle Scholar
  4. Bacon, D., Sigurdsson, S., Davies, M. B.: MNRAS 281, 830 (1996)ADSGoogle Scholar
  5. Barnes, J., Hut, P.: Nature 324, 446 (1986)ADSGoogle Scholar
  6. Bastian, N., Lamers, J. G. L. M, Longmore, S. N., Goodwin, S. P., de Mink, S., Gieles, M.: MNRAS 436, 2398 (2013)Google Scholar
  7. Baumgardt, H.: MNRAS 325, 1323 (2001)ADSGoogle Scholar
  8. Baumgardt, H., Makino, J.: MNRAS 340, 227 (2003)ADSGoogle Scholar
  9. Bekki, K.: MNRAS 412, 2241 (2011)ADSGoogle Scholar
  10. Belleman, R. G., Bédorf, J., Portegies Zwart, S. F.: New Astronomy 13, 103 (2008)ADSGoogle Scholar
  11. Benz, W., Hills, J. G.: ApJ 323, 614 (1987)ADSGoogle Scholar
  12. Berczik, P., Nitadori, K., Zhong, S., et al.: in Proc. 1st International Conference on High-Performance Computing, HPC-UA, p.8 (2011)Google Scholar
  13. Bettwieser, E., Sugimoto, D.: MNRAS 208, 493 (1984)ADSGoogle Scholar
  14. Binney, J., Tremaine, S.: Galactic Dynamics (2nd Edition), Princeton University Press (2008)Google Scholar
  15. Capuzzo-Dolcetta, R., Spera, M., Punzo, D.: Journal of Computational Physics 236, 580 (2013)ADSMathSciNetGoogle Scholar
  16. Carretta, E., Bragaglia, A., Gratton, et al.: A&A 505, 117 (2009a)Google Scholar
  17. Carretta, E., Bragaglia, A., Gratton, R., Lucatello, S.: A&A 505, 139 (2009b)ADSGoogle Scholar
  18. Chatterjee, S., Fregeau, J. M., Rasio, F. A.: in Dynamical Evolution of Dense Stellar Systems, IAU Symp. 246, 151 (2008)Google Scholar
  19. Chernoff, D. F., Weinberg, M. D.: ApJ 351, 121 (1990)ADSGoogle Scholar
  20. Cohn, H.: ApJ 234, 1036 (1979)ADSGoogle Scholar
  21. Cohn, H.: ApJ 242, 765 (1980)ADSGoogle Scholar
  22. Cohn, H., Hut, P., Wise, M.: ApJ 342, 814 (1989)ADSGoogle Scholar
  23. Cottrell, P. L., Da Costa, G. S.: ApJ 245, L79 (1981)ADSGoogle Scholar
  24. D’Ercole, A., Vesperini, E., D’Antona, F., McMillan, S. L. W., Recchi, S.: MNRAS 391, 825 (2008)ADSGoogle Scholar
  25. D’Ercole, A., D’Antona, F., Ventura, P., Vesperini, E., McMillan, S. L. W.: MNRAS 407, 854 (2010)ADSGoogle Scholar
  26. de Mink, S. E., Pols, O. R., Langer, N., Izzard, R. G.: A&A 507, L1 (2009)ADSGoogle Scholar
  27. Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., Ekström, S.: A&A 464, 1029 (2007)ADSGoogle Scholar
  28. Decressin, T., Baumgardt, H., Kroupa, P.: A&A 492, 101 (2008)ADSGoogle Scholar
  29. Dehnen, W.: ApJL 536, L39 (2000)ADSGoogle Scholar
  30. Deiters, S., Spurzem, R.: Astronomical and Astrophysical Transactions 20, 47 (2001)ADSGoogle Scholar
  31. Drukier, G. A., Fahlman, G. G., Richer, H. B.: ApJ 386, 106 (1992)ADSGoogle Scholar
  32. Ebisuzaki, T., Makino, J., Fukushige, T., Taiji, M., Sugimoto D.: PASJ 45, 269 (1993)ADSGoogle Scholar
  33. Eggleton, P. P., Fitchett, M. J., Tout, C. A.: ApJ 347, 998 (1989)ADSGoogle Scholar
  34. Einsel, C., Spurzem, R.: MNRAS 302, 81 (1999)ADSGoogle Scholar
  35. Fabian, A. C., Pringle, J. E., Rees, M. J.: MNRAS 172, 15P (1975)ADSGoogle Scholar
  36. Fregeau, J. M., Rasio, F. A.: ApJ 658, 1047 (2007)ADSGoogle Scholar
  37. Fregeau, J. M., Gürkan, M. A., Joshi, K.J., Rasio, F. A.: ApJ 593, 772 (2003)ADSGoogle Scholar
  38. Fregeau, J. M., Cheung, P., Portegies Zwart, S. F., Rasio, F. A.: MNRAS 352, 1 (2004)ADSGoogle Scholar
  39. Freitag, M., Benz, W.: A&A 375, 711 (2001)ADSGoogle Scholar
  40. Freitag, M., Benz, W.: MNRAS 358, 1133 (2005)ADSGoogle Scholar
  41. Freitag, M., Rasio, F. A., Baumgardt, H.: MNRAS 368, 121 (2006)ADSGoogle Scholar
  42. Fujii, M., Iwasawa, M., Funato, Y., Makino, J.: PASJ 59, 1095 (2007)ADSGoogle Scholar
  43. Fukushige, T., Heggie, D. C.: MNRAS 276, 206 (1995)ADSGoogle Scholar
  44. Fukushige, T., Heggie, D. C.: MNRAS 318, 753 (2000)ADSGoogle Scholar
  45. Gaburov, E., Harfst, S., Portegies Zwart, S. F.: New Astronomy 14, 630 (2009)ADSGoogle Scholar
  46. Gaburov, E., Lombardi, J. C., Portegies Zwart S.: MNRAS 383, L5 (2008)ADSGoogle Scholar
  47. Gao, B., Goodman, J., Cohn, H., Murphy, B.: ApJ 370, 567 (1991)ADSGoogle Scholar
  48. Giersz, M.: MNRAS 298, 1239 (1998)ADSGoogle Scholar
  49. Giersz, M.: MNRAS 324, 218 (2001)ADSGoogle Scholar
  50. Giersz, M.: MNRAS 371, 484 (2006)ADSGoogle Scholar
  51. Giersz, M., Heggie, D. C.: MNRAS 268, 257 (1994)ADSGoogle Scholar
  52. Giersz, M., Heggie, D. C.: MNRAS 395, 1173 (2009)ADSGoogle Scholar
  53. Giersz, M., Heggie D. C.: MNRAS 410, 2698 (2011)ADSGoogle Scholar
  54. Giersz, M., Heggie, D.C., Hurley, J. R., Hypki, A.: MNRAS 431, 2184 (2013)ADSGoogle Scholar
  55. Giersz, M., Spurzem, R.: MNRAS 343, 781 (2003)ADSGoogle Scholar
  56. Goodman, J.: ApJ 313, 576 (1987)ADSGoogle Scholar
  57. Goodman, J., Hut, P.: Nature 339, 40 (1989)ADSGoogle Scholar
  58. Grindlay, J. E., Portegies Zwart, S. F. McMillan, S. L. W.: Nature Physics 2, 116 (2006)ADSGoogle Scholar
  59. Gürkan, M. A., Freitag, M., Rasio, F. A.: ApJ 604, 632 (2004)ADSGoogle Scholar
  60. Hamada, T., Iitaka, T.: astro-ph/0703100 (2007)Google Scholar
  61. Heggie, D. C.: MNRAS 173, 729 (1975)ADSGoogle Scholar
  62. Heggie, D. C., Aarseth, S. J.: MNRAS 257, 513 (1992)ADSGoogle Scholar
  63. Heggie, D. C., Giersz, M.: MNRAS 389, 1858 (2008)ADSGoogle Scholar
  64. Heggie, D. C., Hut, P.: The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics, Cambridge University Press (2003)Google Scholar
  65. Heggie, D. C., Mathieu R. D.: in The Use of Supercomputers in Stellar Dynamics, LNP Vol. 267, Springer-Verlag, p. 13 (1986)Google Scholar
  66. Hénon, M.: Annales d’Astrophysique 28, 62 (1965)ADSGoogle Scholar
  67. Hénon, M.: in Saas-Fee Advanced Course 3: Dynamical Structure and Evolution of Stellar Systems, Observatoire de Genéve, p. 183 (1973)Google Scholar
  68. Hills, J. G.: AJ 80, 809 (1975)ADSMathSciNetGoogle Scholar
  69. Hills, J. G, Day, C. A.: ApJL 17, 87 (1976)Google Scholar
  70. Hurley, J. R., Pols, O. R., Tout, C. A.: MNRAS 315, 543 (2000)ADSGoogle Scholar
  71. Hurley, J. R., Tout, C. A., Aarseth, S. J., Pols, O. R.: MNRAS 323, 630 (2001)ADSGoogle Scholar
  72. Hurley, J. R., Tout, C. A., Pols, O. R.: MNRAS 329, 897 (2002)ADSGoogle Scholar
  73. Hut, P., Bahcall, J. N.: ApJ 268, 319 (1983)ADSGoogle Scholar
  74. Hut, P., Inagaki, S.: ApJ 298, 502 (1985)ADSGoogle Scholar
  75. Hut, P., Makino, J., McMillan, S. L. W.: Nature 336, 31 (1988)ADSGoogle Scholar
  76. Inagaki, S., Saslaw, W. C.: ApJ 292, 339 (1985)ADSGoogle Scholar
  77. Joshi, K. J., Rasio, F. A., Portegies Zwart, S.: ApJ 540, 969 (2000)ADSGoogle Scholar
  78. Karakas, A., Lattanzio, J. C.: PASA 24,103 (2007)ADSGoogle Scholar
  79. Kim. E., Einsel, C., Lee, H-M., Spurzem, R., Lee, M. G.: MNRAS 334, 310 (2002)Google Scholar
  80. Kim. E., Lee, H-M., Spurzem, R.: MNRAS 351, 220 (2004)Google Scholar
  81. King, I. R.: AJ 71, 64 (1966)ADSGoogle Scholar
  82. Kroupa, P.: MNRAS 322, 231 (2001)ADSGoogle Scholar
  83. Kupi, G., Amaro-Seoane, P., Spurzem, R.: MNRAS 371, L45 (2006)ADSGoogle Scholar
  84. Lamers, H. J. G. L. M., Gieles, M., Portegies Zwart, S. F.: A&A 429, 173 (2005)Google Scholar
  85. Lombardi, J. C., Thrall, A. P., Deneva, J. S., Fleming, S. W., Grabowski PE.: MNRAS 345, 762 (2003)Google Scholar
  86. Lynden-Bell, D., Eggleton, P. P.: MNRAS 191, 483 (1980)ADSMathSciNetGoogle Scholar
  87. Lynden-Bell, D., Wood, R.: MNRAS 138, 495 (1968)ADSGoogle Scholar
  88. Makino, J.: ApJ 471, 796 (1996)ADSGoogle Scholar
  89. Makino, J.: astro-ph/0509278 (2005)Google Scholar
  90. Makino, J., Aarseth, S. J.: PASJ 44, 141 (1992)ADSGoogle Scholar
  91. Makino, J., Hut, P., Kaplan, M., Saygın, H.: New Astronomy 12, 124 (2006)ADSGoogle Scholar
  92. McMillan, S. L. W.: in The Use of Supercomputers in Stellar Dynamics, LNP Vol. 267, Springer-Verlag, p. 156 (1986)Google Scholar
  93. McMillan, S. L. W., Aarseth, S. J.: ApJ 414, 200 (1993)ADSGoogle Scholar
  94. McMillan, S. L. W., Hut, P., Makino, J.: ApJ 362, 522 (1990)ADSGoogle Scholar
  95. McMillan, S. L. W., Hut, P., Makino, J.: ApJ 372, 111 (1991)ADSGoogle Scholar
  96. McMillan, S., Portegies Zwart, S., van Elteren, A., Whitehead, A.: in Advances in Computational Astrophysics: methods, tools and outcomes, ASPC 435, p.129 (2012)Google Scholar
  97. Milone, A. P., Piotto, G., Bedin, L. R., Sarajedini, A.: MmSAI 79, 623 (2008)ADSGoogle Scholar
  98. Moore, B., Quinn, T., Governato, F., Stadel, J., Lake, G.: MNRAS 310, 1147 (1999)ADSGoogle Scholar
  99. Nitadori, K., Makino, J.: New Astronomy 13, 498 (2008)ADSGoogle Scholar
  100. Nitadori, K., Aarseth, S. J.: MNRAS 424, 545 (2012)ADSGoogle Scholar
  101. Pelupessy, F. I., Portegies Zwart, S.: MNRAS 420, 1503 (2012)ADSGoogle Scholar
  102. Pelupessy, F. I., van Elteren, A., de Vries, N., McMillan, S.L.W., Drost, N., Portegies Zwart, S.F.: A&A 557, A84 (2013)ADSGoogle Scholar
  103. Piotto, G., Villanova, S., Bedin, L. R., Gratton, R., Cassisi, S., et al.: ApJ 621, 777 (2005)ADSGoogle Scholar
  104. Piotto, G.: MmSAI 79, 334 (2008)ADSGoogle Scholar
  105. Plummer, H. C.: MNRAS 71, 460 (1911)ADSGoogle Scholar
  106. Portegies Zwart, S. F., McMillan, S. L. W.: ApJ 576, 899 (2002)ADSGoogle Scholar
  107. Portegies Zwart, S. F., Takahashi, K.: Celestial Mechanics and Dynamical Astronomy 73, 179 (1999)ADSzbMATHMathSciNetGoogle Scholar
  108. Portegies Zwart, S. F., Verbunt, F.: A&A 309, 179 (1996)ADSGoogle Scholar
  109. Portegies Zwart, S. F., Makino, J., McMillan, S. L. W., Hut, P.: A&A 348, 117 (1999)ADSGoogle Scholar
  110. Portegies Zwart, S. F., McMillan, S. L. W., Hut, P., Makino, J.: MNRAS 321, 199 (2001)ADSGoogle Scholar
  111. Portegies Zwart, S. F., McMillan, S. L. W., Harfst, S., Groen, D., Fujii, M., et al.: New Astronomy 14, 369 (2009)ADSGoogle Scholar
  112. Portegies Zwart, S. F., Belleman, R. G., Geldof, P. M.: New Astronomy 12, 641 (2007)ADSGoogle Scholar
  113. Portegies Zwart, S., McMillan, S. L. W., van Elteren, E., Pelupessy, I., de Vries, N.: Computer Physics Communications 184, 456 (2013)ADSGoogle Scholar
  114. Prantzos, N., Charbonnel, C.: A&A 458, 135 (2006)ADSGoogle Scholar
  115. Quinlan, G. D.: New Astronomy 1, 255 (1996)ADSGoogle Scholar
  116. Renzini, A.: MNRAS 391, 354 (2008)ADSGoogle Scholar
  117. Shapiro, S. L.: in Dynamics of Star Clusters, IAU Symp. 113, p. 373 (1985)Google Scholar
  118. Spitzer, L.: in Dynamics of the Solar Systems, IAU Symp. 69, p. 3 (1975)Google Scholar
  119. Spitzer, L.: Dynamical evolution of globular clusters, Princeton University Press (1987)Google Scholar
  120. Spitzer, L. J.: ApJL 158, 139 (1989)ADSGoogle Scholar
  121. Spitzer, L. J Hart, M. H.: ApJ 164, 399 (1971)ADSGoogle Scholar
  122. Spurzem, R.: Journal of Computational and Applied Mathematics 109, 407 (1999)ADSzbMATHMathSciNetGoogle Scholar
  123. Spurzem, R., Berentzen, I., Berczik, P., Merritt, D., Amaro-Seoane, P., Harfst, S., Gualandris, A.: in The Cambridge N-Body Lectures, LNP Vol. 760, Springer-Verlag, p. 377 (2008)Google Scholar
  124. Stodolkiewicz, J. S.: Acta Astron. 32, 63 (1982)ADSGoogle Scholar
  125. Stodolkiewicz, J. S.: Acta Astron. 36, 19 (1986)ADSGoogle Scholar
  126. Takahashi, K.: PASJ 48, 691 (1996)ADSGoogle Scholar
  127. Takahashi, K.: PASJ 49, 547 (1997)ADSGoogle Scholar
  128. Takahashi, K., Portegies Zwart, S. F.: ApJL 503, 49 (1998)ADSGoogle Scholar
  129. Takahashi, K., Portegies Zwart, S. F.: ApJ 535, 759 (2000)ADSGoogle Scholar
  130. Tanikawa, A., Hut, P., Makino, J.: New Astronomy 17, 272 (2012)ADSGoogle Scholar
  131. Vesperini, E., McMillan, S. L. W., D’Antona, F., D’Ercole, A.: MNRAS 416, 355 (2011)ADSGoogle Scholar
  132. Vesperini, E., McMillan, S. L. W., D’Antona, F., D’Ercole, A.: MNRAS 429, 1913 (2013)ADSGoogle Scholar
  133. Vesperini, E., McMillan, S. L. W., Portegies Zwart, S.: ApJ 698, 615 (2009)ADSGoogle Scholar
  134. Wang, L., Nitadori, K., Spurzem, R., Berczik, P., Aarseth S.J.: in prep. (2014)Google Scholar
  135. Whitehead, A., McMillan, S. L. W., Vesperini, E., Portegies Zwart, S.: ApJ 778, 118 (2013)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsDrexel UniversityPhiladelphiaUSA

Personalised recommendations