Skip to main content

Cyclic Phosphonates and Caged Bicyclic Phosphates

  • Chapter
  • First Online:
Environmentally Friendly Alkylphosphonate Herbicides

Abstract

Several different types of cyclic phosphonates IVA-IVF and caged bicyclic phosphates IVG-IVH were further designed and synthesized. On the basis of systematic bioassay, several cyclic phosphonates were found to be effective against broadleaves by post-emergence application at 18.5~75 g ai/ha in the greenhouse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy NK, Nidiry ES, Vasu K et al (1996) Quantitative structure-activity relationship studies of O, O-bisaryl alkylphosphonate fungicides by Hansch approach and principal component analysis. J Agric Food Chem 44:3971–3976

    Article  CAS  Google Scholar 

  2. Forlani G, Giberti S, Berlicki L et al (2007) Plant P5C reductase as a new target for aminomethylenebisphosphonates. J Agric Food Chem 55:4340–4347

    Article  CAS  Google Scholar 

  3. Forlani G, Occhipinti A, Berlicki Ł et al (2008) Tailoring the structure of aminobisphosphonates to target plant P5C reductase. J Agric Food Chem 56:3193–3199

    Article  CAS  Google Scholar 

  4. Cox JM, Hawkes TR, Bellini P et al (1997) The design and synthesis of inhibitors of imidazoleglycerol phosphate dehydratase as potential herbicides. Pestic Sci 50:297–311

    Article  CAS  Google Scholar 

  5. He HW, Wang J, Liu ZJ (1994) Synthesis of α-(substituted phenoxy acetoxy)alkyl phosphonates. Chinese Chem Lett 5:35–38

    CAS  Google Scholar 

  6. He HW, Wang J, Liu ZJ et al (1994) Study on biologically active organophosphorus compounds V, synthesis and properties of α-(substituted phenoxyacetoxy) alkyl phosphonates. Chin J Appl Chem 11:21–24

    CAS  Google Scholar 

  7. He HW, Wang J, Liu ZJ et al (1994) Studies on biologically active organphosphorus compounds. VI. Synthesis properties and biological activity of α-1-oxophosphonic acid derivatives. J Centr Chin Norm Univ (Nat Sci) 28:71–76

    Google Scholar 

  8. Chen T, Shen P, Li YJ et al (2006) Synthesis and herbicidal activity of O,O-dialkyl phenoxyacetoxyalkylphosphonates containing fluorine. J Fluorine Chem 127:291–295

    Google Scholar 

  9. Chen T, Shen P, Li Y et al (2006) The synthesis and herbicidal evaluation of fluorine-containing phenoxyacetoxyalkylphosphonate derivatives. Phosphorus Sulfur Silicon Relat Elem 181:2135–2145

    Article  CAS  Google Scholar 

  10. Wang J, Chen XY, Liu XF et al (1999) The synthesis and biological properties of α-1-halogenated phenoxy carbonyloxy alkylphosphonic acids and esters. Chin J Chem Reag 21:301–303

    CAS  Google Scholar 

  11. He HW, Chen T, Li YJ (2007) Synthesis and herbicidal activity of alkyl 1-(3-trifluoromethylphenoxyacetoxy)-1-substituted methylphosphonates. J Pest Sci 32:42–44

    Article  CAS  Google Scholar 

  12. Li YJ, He HW (2008) Synthesis and herbicidal activity of α-[2-(fluoro-substituted phenoxy) propionyloxy] alkyl phosphonates. Phosphorus, Sulfur Silicon Relat Elem 183:712–713

    Article  CAS  Google Scholar 

  13. He HW, Liu ZJ, Wang J (1998) Synthesis and biological activities of α-1-[2-(2,4-dichlorophenoxy)propionyloxy] alkyl phosphonates. Chin J Appl Chem 15:88–90

    CAS  Google Scholar 

  14. Wang J, He HW, Liu ZJ (1997) Synthesis of α-[2-(2, 4-dichlorophenoxy) propionyloxy] alkyl phosphonates. Chin Chem Lett 8:943–944

    CAS  Google Scholar 

  15. Wang T, He HW (2004) Simple and improved preparation of α-oxophosphonate monolithium salts. Phosphorus, Sulfur Silicon Relat Elem 179:2081–2089

    Article  CAS  Google Scholar 

  16. He HW, Yuan JL, Peng H et al (2011) Studies of O, O-dimethyl α-(2,4-dichlorophenoxyacetoxy) ethylphosphonate (HW02) as a new herbicide. 1. Synthesis and herbicidal activity of HW02 and analogues as novel inhibitors of pyruvate dehydrogenase complex. J Agric Food Chem 59:4801–4813

    Article  CAS  Google Scholar 

  17. Peng H, Wang T, Xie P et al (2007) Molecular docking and three-dimensional quantitative structure-activity relationship studies on the binding modes of herbicidal 1-(substituted phenoxyacetoxy) alkylphosphonates to the E1 component of pyruvate dehydrogenase. J Agric Food Chem 55:1871–1880

    Article  CAS  Google Scholar 

  18. Wang T, He HW, Miao FM (2009) Synthesis, crystal structure and herbicidal activity of α-(2,4-dichlorophenoxyacetoxy)-α-arylmethylphosphonates. Chin J Org Chem 29:1152–1157

    CAS  Google Scholar 

  19. Meng LP, He HW, Liu ZJ (1998) Synthesis and biological activities of O,O-dimethyl α-(NO2 substituted phenoxyacetoxy)alkylphosphonates. Chin J Hubei Chem Industry (special issu):40–41

    Google Scholar 

  20. He HW, Peng H, Wang T et al (2013) α-(Substituted-phenoxyacetoxy)-α-heterocyclylmethylphosphonates: Synthesis, herbicidal activity, inhibition on pyruvate dehydrogenase complex (PDHc), and application as postemergent herbicide against broadleaf weeds. J Agric Food Chem 61:2479–2488

    Article  CAS  Google Scholar 

  21. He HW, Meng LP, Hu LM et al (2002) Synthesis and plant growth regulatory activity of 1-(1-phenyl 1.2.4-triazole-3-oxyacetoxy)alkyl phosphonates. Chin J Pest Sci 4:14–18

    CAS  Google Scholar 

  22. Kiran YB, Reddy CD, Gunasekar D et al (2008) Synthesis and anticancer activity of new class of bisphosphonates/phosphanamidates. Eur J Med Chem 43:885–892

    Article  CAS  Google Scholar 

  23. Sulsky R, Robl JA, Biller SA et al (2004) 5-Carboxamido-1,3,2-dioxaphosphinanes, potent inhibitors of MTP. Bioorg Med Chem Lett 14:5067–5070

    Article  CAS  Google Scholar 

  24. Patel DV, Rielly-Gauvin K, Ryono DE (1990) Peptidic α-hydroxy phosphinyls C-terminal modification methodology. Tetrahedron Lett 31:5591–5594

    Article  CAS  Google Scholar 

  25. Stowasser B, Budt K-H, Jian-Qi L et al (1992) New hybrid transition state analog inhibitors of HIV protease with peripheric C2-symmetry. Tetrahedron Lett 33:6625–6628

    Article  CAS  Google Scholar 

  26. Sikorski JA, Miller MJ, Braccolino DS et al (1993) EPSP synthase: The design and synthesis of bisubstrate inhibitors incorporating novel 3-phosphate mimics. Phosphorus, Sulfur Silicon Relat Elem 76:115–118

    Article  Google Scholar 

  27. Engel R (1977) Phosphonates as analogues of natural phosphates. Chem Rev 77:349–367

    Article  CAS  Google Scholar 

  28. Allen MC, Fuhrer W, Tuck B et al (1989) Renin inhibitors. Synthesis of transition-state analog inhibitors containing phosphorus acid derivatives at the scissile bond. J Med Chem 32:1652–1661

    Article  CAS  Google Scholar 

  29. Smith WW, Bartlett PA (1998) Macrocyclic inhibitors of penicillopepsin. 3. Design, synthesis, and evaluation of an inhibitor bridged between P2 and P1’. J Am Chem Soc 120:4622–4628

    Article  CAS  Google Scholar 

  30. Allen J, Atherton F, Hall M et al (1978) Phosphonopeptides, a new class of synthetic antibacterial agents. Nature 272:56–58

    Article  CAS  Google Scholar 

  31. Atherton FR, Hassall CH, Lambert RW (1986) Synthesis structure-activity relationships of antibacterial phosphonopeptides incorporating (1-aminoethyl) phosphonic acid and (aminomethyl) phosphonic acid. J Med Chem 29:29–40

    Article  CAS  Google Scholar 

  32. Jennings LJ, Macchia M, Parkin A (1992) Synthesis of analogues of 5-iodo-2′-deoxyuridine-5′-diphosphate. J Chem Soc Perkin Trans 1:2197–2202

    Article  Google Scholar 

  33. Patel DV, Rielly-Gauvin K, Ryono DE (1990) Preparation of peptidic α-hydroxy phosphonates a new class of transition state analog renin inhibitors. Tetrahedron Lett 31:5587–5590

    Article  CAS  Google Scholar 

  34. Lavielle G, Hautefaye P, Schaeffer C et al (1991) New α-amino phosphonic acid derivatives of vinblastine: chemistry and antitumor activity. J Med Chem 34:1998–2003

    Article  CAS  Google Scholar 

  35. Alonso E, Alonso E, Solís A et al (2000) Synthesis of N-alkyl-(α-aminoalkyl) phosphine oxides and phosphonic esters as potential HIV-protease inhibitors, starting from α-aminoacids. Synlett 2000:698–700

    Article  Google Scholar 

  36. Camp NP, Hawkins PCD, Hitchcock PB et al (1992) Synthesis of stereochemically defined phosphonamidate-containing peptides: inhibitors for the HIV-1 proteinase. Bioorg Med Chem Lett 2:1047–1052

    Article  CAS  Google Scholar 

  37. Hirschmann R, Smith AB, Taylor CM et al (1994) Peptide synthesis catalyzed by an antibody containing a binding site for variable amino acids. Science 265:234–237

    Article  CAS  Google Scholar 

  38. Bischofberger N, Waldmann H, Saito T et al (1988) Synthesis of analogs of 1,3-dihydroxyacetone phosphate and glyceraldehyde 3-phosphate for use in studies of fructose-1,6-diphosphate aldolase. J Org Chem 53:3457–3465

    Article  CAS  Google Scholar 

  39. Allen MC, Fuhrer W, Tuck B et al (1989) Renin inhibitors. Synthesis of transition-state analog inhibitors containing phosphorus acid derivatives at the scissile bond. J Med Chem 32:1652–1661

    Article  CAS  Google Scholar 

  40. Palacios F, Alonso C, de los Santos JM (2005) Synthesis of β-aminophosphonates and-phosphinates. Chem Rev 105:899–932

    Google Scholar 

  41. Pudovik A, Konovalova I (1979) Addition reactions of esters of phosphorus (III) acids with unsaturated systems. Synthesis 1979:81–96

    Article  Google Scholar 

  42. Ten Hoeve W, Wynberg H (1985) The design of resolving agents. Chiral cyclic phosphoric acids. J Org Chem 50:4508–4514

    Article  Google Scholar 

  43. Kumaraswamy S, Selvi RS, Swamy KK (1997) Synthesis of new α-hydroxy-, α-halogeno- and vinylphosphonates derived from 5,5-dimethyl-1,3,2-dioxaphosphinane-2-one. Synthesis 1997:207–212

    Article  Google Scholar 

  44. Zuo N, He HW (2006) 2-[(4-Chlorophenyl) hydroxymethyl]-5, 5-dimethyl-4-phenyl-1, 3, 2-dioxaphosphinane-2-one. Acta Cryst E62:o4864–o4865

    Google Scholar 

  45. Chen T, Shen P, Li Y et al (2006) Synthesis and herbicidal activity of O, O-dialkyl s containing fluorine. J Fluorine Chem 127:291–295

    Article  CAS  Google Scholar 

  46. Brayer JL, Talinani L (1990) Tessier J (1990) Preparation of aryl and aryl oxyacetyl diaineoalkanes and analogs as agrochemical fungicides. EP 376:819

    Google Scholar 

  47. Wang W, He HW, Zuo N et al (2012) Synthesis and herbicidal activity of 2-(substituted phenoxyacetoxy)alkyl-5,5-dimethyl-1,3,2- dioxaphosphinane-2-one containing fluorine. J Fluorine Chem 142:24–28

    Article  CAS  Google Scholar 

  48. Wang W, He HW, Zuo N et al (2012) Synthesis and herbicidal activity of 2-(substituted phenoxyacetoxy)alkyl-5,5-dimethyl-1,3,2-dioxaphosphinane-2-one. J Agric Food Chem 60:7581–7587

    Article  CAS  Google Scholar 

  49. Xie Q, Zheng J (1991) Synthesis and structure of tricyclohexylstannane aromatoxyacetares. Chin J Org Chem 11:82–87

    CAS  Google Scholar 

  50. Zuo N, He HW (2007) 2-{(2-Chlorophenyl)[(2,4-dichlorophenoxy) acetoxy] methyl}-5, 5-dimethyl-1,3,2-dioxaphosphinane-2-one. Acta Cryst E63:o794–o795

    Google Scholar 

  51. Verkade J, Reynolds L (1960) The synthesis of a novel ester of phosphorus and of arsenic. J Org Chem 25:663–665

    Article  CAS  Google Scholar 

  52. Rätz R, Sweeting OJ (1965) 4-Hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane 1-sulfide and derived compounds. J Org Chem 30:438–442

    Article  Google Scholar 

  53. Rätz R (1965) Bicyclic phosphorus-containing carbamates US patent 3,168,549, 2 Feb 1965

    Google Scholar 

  54. Rätz R (1966) US patent 3,287,448, 1966

    Google Scholar 

  55. Hechenbleikner I, Lanoue FC, Pause CW et al (1966) US patent 3,293,327, 20 Dec 1966

    Google Scholar 

  56. Bowery N, Collins J, Hill R (1976) Bicyclic phosphorus esters that are potent convulsants and GABA antagonists. Nature 261:601–603

    Article  CAS  Google Scholar 

  57. Toy DF, Walsh N (1987) Phosphorus chemistry in everyday living. American Chemical Society, Washington, DC, p 317

    Google Scholar 

  58. Ozoe Y, Mochida K, Eto M (1982) Reaction of toxic bicyclic phosphates with acetylcholinesterases and α-chymotrypsin. Agric Biol Chem 46:2527–2531

    Article  CAS  Google Scholar 

  59. Li YG, Wang JJ, Han T (1988) Study of caged bicyclic phosphates I: 1-Oxo-4-substituted-2,6,7-trioxa-1-phosphabicyclo[2,2,2]octane and its reactions. Acta Chim Sinica 46:679–685

    CAS  Google Scholar 

  60. Li YG, Wang JJ, Liu YS (1989) Study of caged bicyclic phosphates (II)-synthesis of derivatives of 1-sulfo-1-phospha-4-methylene-2,6,7-trioxabicyclo[2,2,2]octane. Chem J Chin Univ 10:1002–1006

    CAS  Google Scholar 

  61. Shao RL, Wang SP, Wang DZ (1991) Studies on synthesis and biological activity of caged bicyclophosphate compounds. Chem J Chin Univ 12:1063–1065

    CAS  Google Scholar 

  62. Li YG, Li JM, Ren HL et al (1992) Studies of caged bicyclic phosphates (V) Synthesis of 1-oxo-1-phospha-2,6,7-trioxabicyclo[2,2,2]-4-substituted carbonyl octane. Chem J Chin Univ 13:204–208

    CAS  Google Scholar 

  63. Li YG, Wang XL, Zhu XF et al (1995) Study on the synthesis of 1-sulfur-1-phospha-2,6,7-trioxzbicyclo [2.2.2] octyl-4-methyl thioethers and its sulfoxides. Chin J Org Chem 15:57–60

    CAS  Google Scholar 

  64. Li YG, Zhu XF, Huang Q et al (1996) Studies on the Synthesis and Structure of N-(1-Oxo-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane-4-carbonyl)-N’-aryl(alkyl)thioureas. Chem J Chin Univ 17:1394–1398

    CAS  Google Scholar 

  65. Vyverberg FJ, Chapman RW (2002) Process for the production of pentaerythritol phosphate alcohol US Patent 6,455,722, 24 Sep, 2002

    Google Scholar 

  66. Sheng XJ, He HW (2006) 4-[(2-Chloro-5-methylphenoxy)acetoxymethyl]-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane 1-oxide. Acta Cryst E62:o4398–o4399

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wu He .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Chemical Industry Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

He, HW., Peng, H., Tan, XS. (2014). Cyclic Phosphonates and Caged Bicyclic Phosphates. In: Environmentally Friendly Alkylphosphonate Herbicides. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44431-3_5

Download citation

Publish with us

Policies and ethics