Skip to main content

Drought Stress Tolerance Mechanisms in Barley and Its Relevance to Cereals

  • Chapter
  • First Online:

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 69))

Abstract

In the changing environment, water is the major limiting factor for crop productivity throughout the world, and there is every need to generate climate-resilient crops. Since drought is a complex phenomenon, we need to dissect various mechanisms at the physiological, biochemical, and molecular levels in order to generate crop plants with better drought tolerance but without any yield penalties. Accumulated literature points out that improvement at both source and sink levels are needed to elevate final yields under water deficit conditions. Here, we summarize the current status of plant adaptation mechanisms and the strategies that we need to carve for generating drought stress-tolerant crops like barley.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abebe T, Melmaiee K, Berg V, Wise RP (2010) Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed. Funct Integr Genomics 10:191–205

    CAS  PubMed  Google Scholar 

  • Ahmadi A, Baker DA (2001) The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul 35:81–91

    CAS  Google Scholar 

  • Anderson MN, Asch F, Wu Y, Jensen CR, Naested H, Mogensen VO, Koch KE (2002) Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize. Plant Physiol 130:591–604

    Google Scholar 

  • Aprile A, Mastrangelo A, De Leonardis A, Galiba G, Roncaglia E, Ferrari F, De Bellis L, Turchi L, Giuliano G, Cattivelli L (2009) Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics 10:279

    PubMed Central  PubMed  Google Scholar 

  • Ashoub A, Beckhaus T, Berberich T, Karas M, Bruggemann W (2013) Comparative analysis of barley leaf proteome as affected by drought stress. Planta 237:771–781

    CAS  PubMed  Google Scholar 

  • Babu RC, Zhang JX, Blum A, Ho THD, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    CAS  Google Scholar 

  • Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    CAS  PubMed  Google Scholar 

  • Blum A (1998) Improving wheat grain filling under stress by stem reserve mobilisation (Reprinted from wheat: prospects for global improvement, 1998). Euphytica 100:77–83

    Google Scholar 

  • Blum A (2000) Towards standard assays of drought resistance in crop plants. In: Ribaut JM, Poland D (eds) Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments. Proceedings of strategic planning workshop, El Batan, Mexico. pp 29–35

    Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res 112:119–123

    Google Scholar 

  • Boyer JS, McLaughlin JE (2007) Functional reversion to identify controlling genes in multigenic responses: analysis of floral abortion. J Exp Bot 58:267–277

    CAS  PubMed  Google Scholar 

  • Boyer JS, Westgate ME (2004) Grain yields with limited water. J Exp Bot 55:2385–2394

    CAS  PubMed  Google Scholar 

  • Bray EA (2002) Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant Cell Environ 25:153–161

    CAS  PubMed  Google Scholar 

  • Brooks A, Jenner CF, Aspinall D (1982) Effects of water deficit on endosperm starch granules and on grain physiology of wheat and barley. Funct Plant Biol 9:423–436

    Google Scholar 

  • Ceccarelli S, Grando S, Baum M (2007) Participatory plant breeding in water-limited environments. Exp Agric 43:1–25

    Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought: from genes to the whole plant. Funct Plant Biol 30:239–264

    CAS  Google Scholar 

  • Checker VG, Chhibbar AK, Khurana P (2012) Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res 21:939–957

    CAS  PubMed  Google Scholar 

  • Cramer G, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    PubMed Central  PubMed  Google Scholar 

  • Damptey HB, Coombe BG, Aspinall D (1976) Apical dominance, water deficit and axillary inflorescence growth in Zea mays: the role of abscisic acid. Ann Bot 42:1447–1458

    Google Scholar 

  • Davis SC, Dohleman FG, Long SP (2011) The global potential for Agave as biofuel feedstock. GCB Bioenergy 3:68–78

    CAS  Google Scholar 

  • Dong C, Agarwal M, Zhang Y, Xie Q, Zhu J (2006) Negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci U S A 103:8281–8286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dorion S, Lalonde S, Saini HS (1996) Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol 111:137–145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duffus CM (1992) Control of starch biosynthesis in developing cereal grains. Biochem Soc Trans 20:13–18

    CAS  PubMed  Google Scholar 

  • Ergen NZ, Budak H (2009) Sequencing over 13 000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant Cell Environ 32:220–236

    CAS  PubMed  Google Scholar 

  • Ergen NZ, Thimmapuram J, Bohnert HJ, Budak H (2009) Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct Integr Genomics 9:377–396

    CAS  PubMed  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    CAS  PubMed  Google Scholar 

  • Friedel S, Usadel B, von Wirén N, Sreenivasulu N (2012) Reverse engineering: a key component of systems biology to unravel global abiotic stress cross-talk. Front Plant Sci 3:294

    PubMed Central  PubMed  Google Scholar 

  • Fu Q, Huang Z, Wang Z, Yang J, Zhang J (2011) Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Res 103:11–24

    Google Scholar 

  • Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) ABA-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci U S A 103:1988–1993

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geigenberger P, Reimholz R, Geiger M, Merlo L, Canale V, Stitt M (1997) Regulation of sucrose and starch metabolism in potato tubers in response to short-term water deficit. Planta 201:502–518

    CAS  Google Scholar 

  • Govind G, Seiler C, Wobus U, Sreenivasulu N (2011) Importance of ABA homeostasis under terminal drought stress in regulating grain filling events. Plant Signal Behav 6:1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney RK, Graner A, Valkoun J (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot 60:3531–3544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halford NG, Curtis TY, Muttucumaru N, Postles J, Mottram DS (2011) Sugars in crop plants. Ann Appl Biol 158:1–25

    CAS  Google Scholar 

  • Harb A, Krishnan A, Madan MR, Ambavaram MR, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoisington D, Ortiz R (2008) Research and field monitoring on transgenic crops by the Centro Internacional de Mejoramiento de Maizy Trigo (CIMMYT). Euphytica 164:893–902

    Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992

    CAS  PubMed Central  PubMed  Google Scholar 

  • James VA, Neibaur I, Altpeter F (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Res 17:93–104

    CAS  PubMed  Google Scholar 

  • Jenner C, Ugalde T, Aspinall D (1991) The physiology of starch and protein deposition in the endosperm of wheat. Funct Plant Biol 18:211–226

    CAS  Google Scholar 

  • Jiang Y, Guo W, Zhu H, Ruan Y-L, Zhang T (2012) Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnol J 10:301–312

    CAS  PubMed  Google Scholar 

  • Jogaiah S, Govind SR, Tran LS (2012) System biology-based approaches towards understanding drought tolerance in food crops. Crit Rev Biotechnol 33:23–39

    PubMed  Google Scholar 

  • Jukanti AK, Heidlebaugh NM, Parrott DL, Fischer IA, McInnerney K, Fischer AM (2008) Comparative transcriptome profiling of near-isogenic barley (Hordeum vulgare) lines differing in the allelic state of a major grain protein content locus identifies genes with possible roles in leaf senescence and nitrogen reallocation. New Phytol 177:333–349

    CAS  PubMed  Google Scholar 

  • Kalladan R, Worch S, Rolletschek H, Harshavardhan VT, Kuntze L, Seiler C, Sreenivasulu N, Röder MS (2013) Identification of quantitative trait loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines. Mol Breed 32:71–99

    Google Scholar 

  • Keeling PL, Bacon PJ, Holt DC (1993) Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta 191:342–348

    CAS  Google Scholar 

  • Khokar ML, Teixeira da Silva JA, Spiertz H (2012) Evaluation of barley genotypes for yielding ability and drought tolerance under irrigated and water-stressed conditions. Am Eurasian J Agric Environ Sci 12:287–292

    Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    CAS  PubMed  Google Scholar 

  • Klimecka M, Muszynska G (2007) Structure and function of plant calcium-dependent protein kinases. Acta Biochim Pol 54:1–15

    Google Scholar 

  • Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP (2013) The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep 32:945–957

    CAS  PubMed  Google Scholar 

  • Koonjul PK, Minhas JS, Nunes C, Sheoran IS, Saini HS (2005) Selective transcriptional down-regulation of anther invertases precedes the failure of pollen development in water-stressed wheat. J Exp Bot 56:179–190

    CAS  PubMed  Google Scholar 

  • Liu F, Jensen CR, Andersen MN (2005) A review of drought adaptation in crop plants: changes in vegetative and reproductive physiology induced ABA-based chemical signals. Aust J Agric Res 56:1245–1252

    CAS  Google Scholar 

  • Lourenco T, Saibo N, Batista R, Ricardo CP, Oliveira MM (2011) Inducible and constitutive expression of HvCBF4 in rice leads to differential gene expression and drought tolerance. Biol Plantarum 55:653–663

    CAS  Google Scholar 

  • MacLeod L, Duffus C (1988) Reduced starch content and sucrose synthase activity in developing endosperm of barley plants grown at elevated temperatures. Funct Plant Biol 15:367–375

    CAS  Google Scholar 

  • Makela P, McLaughlin JE, Boyer JS (2005) Imaging and quantifying carbohydrate transport to the developing ovaries of maize. Ann Bot 96:939–949

    CAS  PubMed  Google Scholar 

  • Mangelsen E, Wanke D, Kilian J, Sundberg E, Harter K, Jansson C (2010) Significance of light, sugar, and amino acid supply for diurnal gene regulation in developing barley caryopses. Plant Physiol 153:14–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • McLaughlin JE, Boyer JS (2004) Sugar-responsive gene expression, invertase activity and senescence in aborting maize ovaries at low water potentials. Ann Bot 94:675–689

    CAS  PubMed  Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645

    CAS  PubMed Central  PubMed  Google Scholar 

  • Molina-Cano JL, Polo JP, Sopena A, Voltas J, Perez-Vendrell AM, Romagosa I (2000) Mechanisms of malt extract development in barleys from different European regions. II. Effect of barley hordein fractions on malt extract yield. J Inst Brewing 106:117–123

    CAS  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249

    CAS  PubMed  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci U S A 104:16450–16455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685

    CAS  PubMed  Google Scholar 

  • Newton A, Flavell A, George T, Philip L, Barry M, Luke R, Cesar R, Joanne R, Brian S, Swanston J, William T, Robbie W, Philip W, Ian B (2011) Crops that feed the world 4, barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Secur 3:141–178

    Google Scholar 

  • Nicolas ME, Gleadow RM, Dalling MJ (1985) Effect of post-anthesis drought on cell-division and starch accumulation in developing wheat grains. Ann Bot 55:433–444

    Google Scholar 

  • Ober ES, Setter TL, Madison JT, Thompson JF, Shapiro PS (1991) Influence of water deficit on maize endosperm development: enzyme activities and RNA transcripts of starch and zein synthesis, abscisic acid, and cell division. Plant Physiol 97:154–164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oh S, Kwon C, Choi D, Song SI, Kim J (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5:646–656

    CAS  PubMed  Google Scholar 

  • Oliver SN, Van Dongen JT, Alfred SC, Mamun EA, Zhao X, Saini HS, Fernandes SF, Blanchard CL, Sutton BG, Geigenberger P, Dennis ES, Dolferus R (2005) Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant Cell Environ 28:1534–1551

    CAS  Google Scholar 

  • Passioura JB (1996) Drought and drought tolerance. Plant Growth Regul 20:79–83

    CAS  Google Scholar 

  • Perera IY, Hung CY, Moore CD, Stevenson-Paulik J, Boss WF (2008) Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling. Plant Cell 20:2876–2893

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manes Y, Mather DE, Parry MAJ (2011) Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot 62:439–452

    CAS  PubMed  Google Scholar 

  • Riggs TJ, Sanada M, Morgan AG, Smith DB (1983) Use of acid gel-electrophoresis in the characterization of B-hordein protein in relation to malting quality and mildew resistance of barley. J Sci Food Agric 34:576–586

    CAS  Google Scholar 

  • Rohila JS, Rajinder K, Wua J, Wua R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163:525–532

    CAS  Google Scholar 

  • Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955

    CAS  PubMed  Google Scholar 

  • Saini HS (1997) Effect of water stress on male gametophyte development in plants. Sex Plant Reprod 10:67–73

    Google Scholar 

  • Saini HS, Aspinall D (1981) Effect of water deficit on sporogenesis in wheat (Triticum aestivum L.). Ann Bot 48:623–633

    Google Scholar 

  • Saini HS, Lalonde S (1998) Injuries to reproductive development under water stress, and their consequences for crop productivity. J Crop Prod 1:223–248

    Google Scholar 

  • Saini HS, Sedgley M, Aspinall D (1984) Developmental anatomy in wheat of male sterility induced by heat stress, water deficit or abscisic acid. Aust J Plant Physiol 11:243–253

    Google Scholar 

  • Sairam RK, Saxena DC (2000) Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. Biol Plantarum 43:245–251

    CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2a, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought and salt-responsiveness in rice. Field Crops Res 76:199–219

    Google Scholar 

  • Samarah N, Alqudah A (2011) Effects of late-terminal drought stress on seed germination and vigour of barley (Hordeum vulgare L.). Arch Agron Soil Sci 57:27–32

    Google Scholar 

  • Savin R, Nicolas ME (1996) Effects of short periods of drought and high temperature on grain growth and starch accumulation of two malting barley cultivars. Aust J Plant Physiol 23:201–210

    Google Scholar 

  • Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62:2615–2632

    CAS  PubMed  Google Scholar 

  • Sheoran I, Saini H (1996) Drought-induced male sterility in rice: changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen. Sex Plant Reprod 9:161–169

    Google Scholar 

  • Shewry PR, March JF, Miflin BJ (1980) N-terminal amino-acid-sequence of C-Hordein. Phytochemistry 19:2113–2115

    CAS  Google Scholar 

  • Shewry PR, Kreis M, Parmar S, Lew EJL, Kasarda DD (1985) Identification of gamma-type hordeins in barley. FEBS Lett 190:61–64

    CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1999) Molecular responses to drought stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. R.G. Landes Company, Austin, TX, pp 11–28

    Google Scholar 

  • Simic G, Sudar R, Lalic A, Jurkovic Z, Horvat D, Babic D (2007) Relationship between hordein proteins and malt quality in barley cultivars grown in Croatia. Cereal Res Commun 35:1487–1496

    Google Scholar 

  • Sinclair TR (2011) Challenges in breeding for yield increase for drought. Trends Plant Sci 16:289–293

    CAS  PubMed  Google Scholar 

  • Smith DB, Lister PR (1983) Gel-forming proteins in barley grain and their relationships with malting quality. J Cereal Sci 1:229–239

    CAS  Google Scholar 

  • Sreenivasulu N, Wobus U (2013) Seed-development programs: a systems biology-based comparison between dicots and monocots. Annu Rev Plant Biol 64:189–217

    CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Altschmied L, Radchuk V, Gubatz S, Wobus U, Weschke W (2004) Transcript profiles and deduced changes of metabolic pathways in maternal and filial tissues of developing barley grains. Plant J 37:539–553

    CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Röder MS, Wobus U (2010a) Trockenstress – eine Suche nach den Ursachen und nach neuen Wegen zur Züchtung trockentoleranter Getreide. GenomXPress 4:4–6

    Google Scholar 

  • Sreenivasulu N, Borisjuk L, Junker BH, Mock HP, Rolletschek H, Seiffert U, Weschke W, Wobus U (2010b) Barley grain development: toward an integrative view. Int Rev Cell Mol Biol 281:49–89

    CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A (2012) Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506:265–273

    CAS  PubMed  Google Scholar 

  • Talame V, Ozturk NZ, Bohnert HJ, Tuberosa R (2007) Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. J Exp Bot 58:229–240

    CAS  PubMed  Google Scholar 

  • Verslues PE, Juenger TE (2011) Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Curr Opin Plant Biol 14:240–245

    CAS  PubMed  Google Scholar 

  • Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 6:143–156

    CAS  PubMed  Google Scholar 

  • Wallwork MAB, Jenner CF, Logue SJ, Sedgley M (1998) Effect of high temperature during grain-filling on the structure of developing and malted barley grains. Ann Bot 82:587–599

    Google Scholar 

  • Westgate ME (1994) Seed formation in maize during drought. In: Westgate ME (ed) Physiology and determination of crop yield. American Society of Agronomy, Madison, WI

    Google Scholar 

  • Weston DT, Horsley RD, Schwarz PB, Goes RJ (1993) Nitrogen and planting date effects on low-protein spring barley. Agron J 85:1170–1174

    Google Scholar 

  • Winkel T, Renno JF, Payne WA (1997) Effect of the timing of water deficit on growth, phenology and yield of pearl millet [Pennisetum glaucum (L.) R. Br.] grown in Sahelian conditions. J Exp Bot 48:1001–1009

    CAS  Google Scholar 

  • Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA (2008) Breeding for abiotic stress for sustainable agriculture. Philos Trans R Soc B Biol Sci 363:703–716

    CAS  Google Scholar 

  • Worch S, Rajesh K, Harshavardhan VT, Pietsch C, Korzun V, Kuntze L, Börner A, Wobus U, Röder MS, Sreenivasulu N (2011) Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biol 11:1

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    CAS  PubMed  Google Scholar 

  • Yadav RS, Sehgal D, Vadez V (2011) Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. J Exp Bot 62:397–408

    CAS  PubMed  Google Scholar 

  • Yang J, Zhang J (2006) Grain filling of cereals under soil drying. New Phytol 169:223–236

    CAS  PubMed  Google Scholar 

  • Yang J, Zhang J, Wang Z, Zhu Q, Wang W (2001) Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 127:315–323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Zhang J, Wang Z, Liu L, Zhu Q (2003) Postanthesis water deficits enhance grain filling in two-line hybrid rice. Crop Sci 43:2099–2108

    Google Scholar 

  • Yang J, Zhang J, Wang Z, Xu G, Zhu Q (2004) Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol 135:1621–1629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang SJ, Vanderbeld B, Wan JX, Huang YF (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3:469–490

    CAS  PubMed  Google Scholar 

  • Zhu X, Gong H, Chen G, Wang S, Zhang C (2005) Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages. J Arid Environ 62:1–14

    Google Scholar 

  • Zinselmeier C, Westgate ME, Schussler JR, Jones RJ (1995) Low water potential disrupts carbohydrate metabolism in maize (Zea mays L.) ovaries. Plant Physiol 107:385–391

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the NS laboratory has been supported by grants from the BLE (GZ:511-06.01-28-1-45.041-10), BMBF (GABI-GRAIN grant number 0315041A; IND 09/526), BMZ grant 81131833, and Ministry of Education, Saxony-Anhalt (IZN). PBK is thankful to the UGC, New Delhi, India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nese Sreenivasulu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kishor, P.B.K., Rajesh, K., Reddy, P.S., Seiler, C., Sreenivasulu, N. (2014). Drought Stress Tolerance Mechanisms in Barley and Its Relevance to Cereals. In: Kumlehn, J., Stein, N. (eds) Biotechnological Approaches to Barley Improvement. Biotechnology in Agriculture and Forestry, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44406-1_9

Download citation

Publish with us

Policies and ethics