Advertisement

Improvement of Mineral Nutrition: A Source and Sink for Candidate Genes

  • Benjamin D. Gruber
  • Nicolaus von Wirén
Chapter
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 69)

Abstract

Due to its widespread cultivation, barley is exposed to a diversity of soils and nutritional availabilities. Acidic soils limit the growth of barley as it is not particularly well adapted or bred for cultivation in such environments. Aluminium toxicity is a major hindrance for barley on acidic soils and forms an ideal target trait for biotechnological approaches. Conversely, barley is well adapted for growth on alkaline soils. Here barley uses phytosiderophores to acquire Fe from poorly available forms. It would be useful to transfer such a trait into other species less able to acquire Fe. We will review the literature relating to the improvement of the mineral nutrition of barley through the use of biotechnology. Additionally we highlight some aspects where barley is particularly well suited as a “trait donor” for other organisms. Using examples relating to biofortification and tolerance to mineral deficiency or elemental toxicity, we illustrate how barley is both a sink and a source of genes for biotechnological approaches.

Keywords

Transgenic Plant Mineral Nutrition Transgenic Rice Plant Biotechnological Approach Organic Acid Anion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aoyama T, Kobayashi T, Takahashi M, Nagasaka S, Usuda K, Kakei Y, Ishimaru Y, Nakanishi H, Mori S, Nishizawa N (2009) OsYSL18 is a rice iron(III)–deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol Biol 70:681–692PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 281:32395–32402PubMedCrossRefGoogle Scholar
  3. Borg S, Brinch-Pedersen H, Tauris B, Holm PB (2009) Iron transport, deposition and bioavailability in the wheat and barley grain. Plant Soil 325:15–24CrossRefGoogle Scholar
  4. Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci U S A 101:15249–15254PubMedCentralPubMedCrossRefGoogle Scholar
  5. Delhaize E, Gruber BD, Ryan PR (2007) The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Lett 581:2255–2262PubMedCrossRefGoogle Scholar
  6. Delhaize E, Taylor P, Hocking PJ, Simpson RJ, Ryan PR, Richardson AE (2009) Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Plant Biotechnol J 7:391–400PubMedCrossRefGoogle Scholar
  7. Dordas C, Brown PH (2000) Permeability of boric acid across lipid bilayers and factors affecting it. J Membr Biol 175:95–105PubMedCrossRefGoogle Scholar
  8. FAOSTAT (2011) Food and agriculture organization of the United Nations. http://faostat.fao.org. Cited 12 Sep 2011
  9. Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091PubMedCrossRefGoogle Scholar
  10. Gorham J, Bristol A, Young EM, Jonesh RGW, Kashour G (1990) Salt tolerance in the Triticeae: K/Na discrimination in barley. J Exp Bot 41:1095–1101CrossRefGoogle Scholar
  11. Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci U S A 95:7220–7224PubMedCentralPubMedCrossRefGoogle Scholar
  12. Gruber BD, Ryan PR, Richardson AE, Tyerman SD, Ramesh S, Hebb DM, Howitt SM, Delhaize E (2010) HvALMT1 from barley is involved in the transport of organic anions. J Exp Bot 61:1455–1467PubMedCentralPubMedCrossRefGoogle Scholar
  13. Gruber BD, Delhaize E, Richardson AE, Roessner U, James RA, Howitt SM, Ryan PR (2011) Characterisation of HvALMT1 function in transgenic barley plants. Funct Plant Biol 38:163–175CrossRefGoogle Scholar
  14. Guerinot ML (2000) The ZIP family of metal transporters. BBA Biomembr 1465:190–198CrossRefGoogle Scholar
  15. Hayes JE, Reid RJ (2004) Boron tolerance in barley is mediated by efflux of boron from the roots. Plant Physiol 136:3376–3382PubMedCentralPubMedCrossRefGoogle Scholar
  16. Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa N-K, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–480PubMedCentralPubMedCrossRefGoogle Scholar
  17. Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung H-Y, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:3003–3014PubMedCentralPubMedCrossRefGoogle Scholar
  18. Huang S, Spielmeyer W, Lagudah ES, Munns R (2008) Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. J Exp Bot 59:927–937PubMedCrossRefGoogle Scholar
  19. Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470–3479PubMedCrossRefGoogle Scholar
  20. James RA, Munns R, Von Caemmerer S, Trejo C, Miller C, Condon T (2006) Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected barley and durum wheat. Plant Cell Environ 29:2185–2197PubMedCrossRefGoogle Scholar
  21. Kader MA, Seidel T, Golldack D, Lindberg S (2006) Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. J Exp Bot 57:4257–4268PubMedCrossRefGoogle Scholar
  22. Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195CrossRefGoogle Scholar
  23. Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424PubMedCrossRefGoogle Scholar
  24. FAO Land Resources (2011) Food and agriculture organization of the United Nations. http://www.fao.org/nr/land/lr-home/en/. Cited 13 Sep 2011
  25. Li QY, Niu HB, Yin J, Shao HB, Niu JS, Ren JP, Li YC, Wang X (2010) Transgenic barley with overexpressed PTrx increases aluminum resistance in roots during germination. J Zhejiang Univ Sci B 11:862–870PubMedCentralPubMedCrossRefGoogle Scholar
  26. Marschner H, Romheld V, Kissel M (1987) Localization of phytosiderophore release and of iron uptake along intact barley roots. Physiol Plantarum 71:157–162CrossRefGoogle Scholar
  27. Masuda H, Suzuki M, Morikawa KC, Kobayashi T, Nakanishi H, Takahashi M, Saigusa M, Mori S, Nishizawa NK (2008) Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 1:100–108CrossRefGoogle Scholar
  28. Masuda H, Usuda K, Kobayashi T, Ishimaru Y, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Mori S, Nishizawa NK (2009) Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2:155–166CrossRefGoogle Scholar
  29. Mian A, Oomen R, Isayenkov S, Sentenac H, Maathuis FJM, Very AA (2011) Over-expression of an Na+- and K+-permeable HKT transporter in barley improves salt tolerance. Plant J 68:468–479PubMedCrossRefGoogle Scholar
  30. Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type–specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178PubMedCentralPubMedCrossRefGoogle Scholar
  31. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663PubMedCrossRefGoogle Scholar
  32. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  33. Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043PubMedCrossRefGoogle Scholar
  34. Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T (2006) A specific transporter for iron(III)–phytosiderophore in barley roots. Plant J 46:563–572PubMedCrossRefGoogle Scholar
  35. Murata Y, Harada E, Sugase K, Namba K, Horikawa M, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T, Kusumoto S (2008) Specific transporter for iron(III)-phytosiderophore complex involved in iron uptake by barley roots. Pure Appl Chem 80:2689–2697CrossRefGoogle Scholar
  36. Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa NK, Mori S (2000) Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol Biol 44:199–207PubMedCrossRefGoogle Scholar
  37. Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454PubMedCentralPubMedCrossRefGoogle Scholar
  38. Oertli JJ (1962) Loss of boron from plants through guttation. Soil Sci 94:214–219CrossRefGoogle Scholar
  39. Panda SK, Matsumoto H (2007) Molecular physiology of aluminum toxicity and tolerance in plants. Bot Rev 73:326–347CrossRefGoogle Scholar
  40. Ramesh SA, Choimes S, Schachtman DP (2004) Over-expression of an Arabidopsis zinc transporter in Hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Mol Biol 54:373–385PubMedCrossRefGoogle Scholar
  41. Reid R (2007) Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. Plant Cell Physiol 48:1673–1678PubMedCrossRefGoogle Scholar
  42. Reid R (2010) Can we really increase yields by making crop plants tolerant to boron toxicity? Plant Sci 178:9–11CrossRefGoogle Scholar
  43. Reid R, Fitzpatrick K (2009) Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiol 151:413–420PubMedCentralPubMedCrossRefGoogle Scholar
  44. Ren Z-H, Gao J-P, Li L-G, Cai X-L, Huang W, Chao D-Y, Zhu M-Z, Wang Z-Y, Luan S, Lin H-X (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146PubMedCrossRefGoogle Scholar
  45. Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023PubMedCrossRefGoogle Scholar
  46. Romheld V (1987) Different strategies for iron acquisition in higher plants. Physiol Plantarum 70:231–234CrossRefGoogle Scholar
  47. Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminium-activated malate transporter. Plant J 37:645–653PubMedCrossRefGoogle Scholar
  48. Schnurbusch T, Hayes J, Sutton T (2010a) Boron toxicity tolerance in wheat and barley: Australian perspectives. Breed Sci 60:297–304CrossRefGoogle Scholar
  49. Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD, Langridge P, Sutton T (2010b) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol 153:1706–1715PubMedCentralPubMedCrossRefGoogle Scholar
  50. Shi H, Lee B-H, Wu S-J, Zhu J-K (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85PubMedCrossRefGoogle Scholar
  51. Sutton T, Baumann U, Hayes J, Collins NC, Shi BJ, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449PubMedCrossRefGoogle Scholar
  52. Suzuki M, Morikawa KC, Nakanishi H, Takahashi M, Saigusa M, Mori S, Nishizawa NK (2008) Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. Soil Sci Plant Nutr 54:77–85CrossRefGoogle Scholar
  53. Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (strategy II) in graminaceous plants. Plant Physiol 121:947–956PubMedCentralPubMedCrossRefGoogle Scholar
  54. Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466–469PubMedCrossRefGoogle Scholar
  55. Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280PubMedCentralPubMedCrossRefGoogle Scholar
  56. Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340PubMedCrossRefGoogle Scholar
  57. Takano J, Miwa K, Yuan L, von Wirén N, Fujiwara T (2005) Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proc Natl Acad Sci U S A 102:12276–12281PubMedCentralPubMedCrossRefGoogle Scholar
  58. Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509PubMedCentralPubMedCrossRefGoogle Scholar
  59. Tanaka M, Takano J, Chiba Y, Lombardo F, Ogasawara Y, Onouchi H, Naito S, Fujiwara T (2011) Boron-dependent degradation of NIP5;1 mRNA for acclimation to excess boron conditions in Arabidopsis. Plant Cell 23:3547–3559PubMedCentralPubMedCrossRefGoogle Scholar
  60. Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15CrossRefGoogle Scholar
  61. Vieira Dos Santos C, Rey P (2006) Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci 11:329–334PubMedCrossRefGoogle Scholar
  62. Wang JP, Raman H, Zhou MX, Ryan PR, Delhaize E, Hebb DM, Coombes N, Mendham N (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265–276PubMedCrossRefGoogle Scholar
  63. Waters BM, Sankaran RP (2011) Moving micronutrients from the soil to the seeds: genes and physiological processes from a biofortification perspective. Plant Sci 180:562–574PubMedCrossRefGoogle Scholar
  64. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84PubMedCrossRefGoogle Scholar
  65. Zhao Z, Ma JF, Sato K, Takeda K (2003) Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta 217:794–800PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Molecular Plant Nutrition Research GroupLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations