Skip to main content

Genetic Control of Reproductive Development

  • Chapter
  • First Online:
Biotechnological Approaches to Barley Improvement

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 69))

Abstract

The control of flowering is central to reproductive success in plants and has a major impact on grain yield in crop species. This chapter reviews the phenology and genetics of the reproductive development of barley in response to photoperiod and vernalisation. The environmental and genetic variation of reproductive meristem development and its effects on spike architecture and yield are discussed. The major barley flowering time genes and allelic variation in adaptation to different cultivation areas are presented. Functional interactions of flowering time genes in barley are discussed in the light of information on the flowering time pathways in the model plants Arabidopsis and rice. Finally, major QTLs for flowering time are presented and pleiotropic effects of flowering time genes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ x H. spontaneum 41-1. Theor Appl Genet 107(7):1215–1225

    Article  CAS  PubMed  Google Scholar 

  • Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    Article  CAS  PubMed  Google Scholar 

  • Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1996) Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity 77:64–73

    Article  CAS  Google Scholar 

  • Borlaug NE (1983) Contributions of conventional plant breeding to food production. Science 219:689–693

    Article  CAS  PubMed  Google Scholar 

  • Borràs-Gelonch G, Slafer GA, Casas AM, van Eeuwijk F, Romagosa I (2010) Genetic control of pre-heading phases and other traits related to development in a double-haploid barley (Hordeum vulgare L.) population. Field Crops Res 119(1):36–47

    Article  Google Scholar 

  • Boyd WJR, Li CD, Grime CR, Cakir M, Potipibool S, Kaveeta L, Men S, Kamali MRJ, Barr AR, Moody DB, Lance RCM, Logue SJ, Raman H, Read BJ (2003) Conventional and molecular genetic analysis of factors contributing to variation in the timing of heading among spring barley (Hordeum vulgare L.) genotypes grown over a mild winter growing season. Aust J Agric Res 54(12):1277–1301

    Article  CAS  Google Scholar 

  • Campoli C, Drosse B, Searle I, Coupland G, von Korff M (2012a) Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS. Plant J 69:868–880

    Article  CAS  PubMed  Google Scholar 

  • Campoli C, Shtaya M, Davis SJ, von Korff M (2012b) Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs. BMC Plant Biol 12:97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casao MC, Iguarta E, Karsai I, Lasa JM, Gracia MP, Casas AM (2011) Expression analysis of vernalization and day-length response genes in barley (Hordeum vulgare L.) indicates that VRNH2 is a repressor of PPDH2 (HvFT3) under long days. J Exp Bot 62:1939–1949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen A, Baumann U, Fincher GB, Collins NC (2009a) Flt-2L, a locus in barley controlling flowering time, spike density, and plant height. Funct Integr Genomics 9(2):243–254

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Carver B, Wang S, Zhang F, Yan L (2009b) Genetic loci associated with stem elongation and winter dormancy release in wheat. Theor Appl Genet 118(5):881–889

    Article  CAS  PubMed  Google Scholar 

  • Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1234–1244

    Article  Google Scholar 

  • Cockram J, Howells RM, O’Sullivan DM (2010) Segmental chromosomal duplications harbouring group IV CONSTANS-like genes in cereals. Genome 53:231–240

    Article  CAS  PubMed  Google Scholar 

  • Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392

    Article  CAS  PubMed  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  CAS  PubMed  Google Scholar 

  • Cuesta-Marcos A, Casas A, Yahiaoui S, Gracia M, Lasa J, Igartua E (2008a) Joint analysis for heading date QTL in small interconnected barley populations. Mol Breed 21(3):383–399

    Article  Google Scholar 

  • Cuesta-Marcos A, Igartua E, Ciudad F, Codesal P, Russell J, Molina-Cano J, Moralejo M, Szűcs P, Gracia M, Lasa J, Casas A (2008b) Heading date QTL in a spring × winter barley cross evaluated in Mediterranean environments. Mol Breed 21(4):455–471

    Article  Google Scholar 

  • Diaz A, Zikhali M, Turner AS, Isaac P, Laurie DA (2012) Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One 7(3):e33234. doi:10.1371/journal.pone.0033234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12:178–184

    Article  CAS  PubMed  Google Scholar 

  • Dixon LE, Knox K, Kozma-Bogmar L, Southern MM, Pokhilko A, Millar AJ (2011) Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis. Curr Biol 21:120–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunford RP, Griffiths S, Christodoulou V, Laurie DA (2005) Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor Appl Genet 110:925–931

    Article  CAS  PubMed  Google Scholar 

  • Ehrenreich I, Hanzawa Y, Chou L, Roe J, Kover PX et al (2009) Candidate gene association mapping of Arabidopsis flowering time. Genetics 183:325–335. doi:10.1534/genetics.109.105189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eleuch L, Abderrazek J, Grando S, Ceccarelli S, von Korff M, Hajer A, Daaloul A, Baum M (2008) Genetic diversity and association analysis for salinity tolerance, heading date and plant height of barley germplasm using SSR markers. J Integr Plant Biol 50:1004–1014

    Article  CAS  PubMed  Google Scholar 

  • Ellis RH, Roberts EH, Summerfield RJ, Cooper JP (1988) Environmental control of flowering in barley (Hordeum vulgare L.). II. Rate of development as a function of temperature and photoperiod and its modification by low-temperature vernalization. Ann Bot 62(2):145–158

    Google Scholar 

  • Ellis RH, Summerfield RJ, Roberts EH, Cooper JP (1989) Environmental control of flowering in barley (Hordeum vulgare). III. Analysis of potential vernalization responses, and methods of screening germplasm for sensitivity to photoperiod and temperature. Ann Bot 63(6):687–704

    Google Scholar 

  • Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ, von Korff M, Laurie DA (2012) Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proc Natl Acad Sci U S A 109:8328–8333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghiglione HO, Gonzalez FG, Serrago R, Maldonado SB, Chilcott C, Cura JA, Miralles DJ, Zhu T, Casal JJ (2008) Autophagy regulated by day length determines the number of fertile florets in wheat. Plant J 55:1010–1024

    Article  CAS  PubMed  Google Scholar 

  • González FG, Slafer GA, Miralles DJ (2002) Vernalization and photoperiod responses in wheat pre-flowering reproductive phases. Field Crops Res 74(2–3):183–195

    Article  Google Scholar 

  • González FG, Slafer GA, Miralles DJ (2003) Floret development and spike growth as affected by photoperiod during stem elongation in wheat. Field Crops Res 81(1):29–38

    Article  Google Scholar 

  • González FG, Slafer GA, Miralles DJ (2005) Pre-anthesis development and number of fertile florets in wheat as affected by photoperiod sensitivity genes Ppd-D1 and Ppd-B1. Euphytica 146(3):253–269

    Article  Google Scholar 

  • González FG, Miralles DJ, Slafer GA (2011) Wheat floret survival as related to pre-anthesis spike growth. J Exp Bot 62(14):4889–4901

    Article  PubMed  Google Scholar 

  • Griffiths FEW, Lyndon RF, Bennett MD (1985) The effects of vernalization on the growth of the wheat shoot apex. Ann Bot 56(4):501–511

    Google Scholar 

  • Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayama R, Yokoi A, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    Article  CAS  PubMed  Google Scholar 

  • Hemming MN, Peacock WJ, Dennis ES, Trevaskis B (2008) Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol 147:355–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hemming MN, Fieg S, Peacock WJ, Dennis ES, Trevaskis B (2009) Regions associated with repression of the barley (Hordeum vulgare) VERNALIZATION1 gene are not required for cold induction. Mol Genet Genomics 282:107–117

    Article  CAS  PubMed  Google Scholar 

  • Herrero E, Kolmos E, Bujdoso N, Yuan Y, Wang M, Berns MC, Uhlworm H, Coupland G, Saini R, Jaskolski M, Webb A, Gonçalves J, Davis SJ (2012) EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. Plant Cell 24:428–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS One 5:e10065

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang W, Pérez-García P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Mas P (2012) Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 336:75–79

    Article  CAS  PubMed  Google Scholar 

  • Ivandic V, Hackett CA, Nevo E, Keith R, Thomas WT, Forster BP (2002) Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Mol Biol 48(5–6):511–527

    Article  CAS  PubMed  Google Scholar 

  • Jang S, Marchal V, Pahigrahi KCS, Wenkel S, Soppe W, Deng XW, Valverde F, Coupland G (2008) Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J 27:1277–1288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jia Q, Zhang J, Westcott S, Zhang X, Bellgard M, Lance R, Li C (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomics 9:255–262

    Article  CAS  PubMed  Google Scholar 

  • Jones H, Leigh FJ, Mackay I, Bower MA, Smith LMJ, Charles MP, Jones G, Jones MK, Brown TA, Powell W (2008) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. Mol Biol Evol 25:2211–2219

    Article  CAS  PubMed  Google Scholar 

  • Karsai I, Szucs P, Mészáros K, Filichkina T, Hayes PM, Skinner JS, Láng L, Bedö Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110:1458–1466

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi R, Kawahigashi H, Ando T, Tonooka T, Handa H (2009) Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering. Plant Physiol 149:1341–1353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kikuchi R, Kawahigashi H, Oshima M, Ando T, Handa H (2011) The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley. J Exp Bot 63(2):773–784

    Article  PubMed Central  PubMed  Google Scholar 

  • Krieger U, Lippman ZB, Zamir D (2010) The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet 42:459–463

    Article  CAS  PubMed  Google Scholar 

  • Laurie DA, Pratchett N, Snape JW, Bezant JH (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38(3):575–585

    Article  CAS  PubMed  Google Scholar 

  • Law CN (1987) The genetic control of day-length response in wheat. In: Atherton JE (ed) Manipulation of xowering. Butterworths, London, pp 225–240

    Chapter  Google Scholar 

  • Law CN, Worland AJ (1997) Genetic analysis of some flowering time and adaptive traits in wheat. New Phytol 137:19–28

    Article  Google Scholar 

  • Lewis S, Faricelli ME, Appendino ML, Valárik M, Dubcovsky J (2008) The chromosome region including the earliness per se locus Eps-Am1 affects the duration of early developmental phases and spikelet number in diploid wheat. J Exp Bot 59(13):3595–3607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li C, Dubcovski J (2008) Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J 55:543–554

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist U (2009) Eighty years of Scandinavian barley mutation genetics and breeding. In: Shu QY (ed) Induced mutations in the genomics era. FAO, Rome, pp 39–43

    Google Scholar 

  • Marquez-Cedillo LA, Hayes PM, Kleinhofs A, Legge WG, Rossnagel BG, Sato K, Ullrich SE, Wesenberg DM, TNABGM Project (2001) QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet 103:625–637

    Article  CAS  Google Scholar 

  • Miralles DJ, Richards RA (2000) Responses of leaf and tiller emergence and primordium initiation in wheat and barley to interchanged photoperiod. Ann Bot 85:655–663

    Article  Google Scholar 

  • Muñoz-Amatriaín M, Moscou MJ, Bhat PR, Svensson JT, Bartoš J, Suchánková P, Šimková H, Endo TR, Fenton RD, Lonardi S, Castillo AM, Chao S, Cistué L, Cuesta-Marcos A, Forrest KL, Hayden MJ, Hayes PM, Horsley RD, Makoto K, Moody D, Sato K, Vallés MP, Wulff BBH, Muehlbauer GJ, Doležel J, Close TJ (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4(3):238–249

    Article  Google Scholar 

  • Pillen K, Zacharias A, Leon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Article  CAS  PubMed  Google Scholar 

  • Pillen K, Zacharias A, Leon J (2004) Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. spontaneum. Theor Appl Genet 108(8):1591–1601

    Article  CAS  PubMed  Google Scholar 

  • Pokhilko A, Fernández AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ (2012) The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol 8:574

    Article  PubMed Central  PubMed  Google Scholar 

  • Quail PH (2002) Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Plant Biol 14:180–188

    Article  CAS  Google Scholar 

  • Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60(7):1899–1918

    Article  CAS  PubMed  Google Scholar 

  • Roberts EH, Summerfield RJ, Cooper JP, Ellis RH (1988) Environmental control of flowering in barley (Hordeum vulgare L.). I. Photoperiod limits to long-day responses, photoperiod-insensitive phases and effects of low-temperature and short-day vernalization. Ann Bot 62(2):127–144

    Google Scholar 

  • Rollins JA, Drosse B, Mulki MA, Grando S, Baum M, Singh M, Ceccarelli S, von Korff M (2013) Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria. Theor Appl Genet 126(11):2803–2824

    Article  CAS  PubMed  Google Scholar 

  • Saisho D, Ishii M, Hori K, Sato K (2011) Natural variation of barley vernalization requirements: implication of quantitative variation of winter growth habit as an adaptive trait in East Asia. Plant Cell Physiol 2011(52):724–727

    Article  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanogsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Sameri M, Pourkheirandish M, Chen G, Takuji Tonooka T, Komatsuda T (2011) Detection of photoperiod responsive and non-responsive flowering time QTL in barley. Breed Sci 61:183–188

    Article  Google Scholar 

  • Shaw LM, Turner AS, Laurie DA (2012) The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum). Plant J 71:71–84

    Article  CAS  PubMed  Google Scholar 

  • Shimada S, Ogawa T, Kitagawa S, Suzuki T, Ikari C, Shitsukawa N, Abe T, Kawahigashi H, Kikuchi R, Handa H, Murai K (2009) A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFUL-like gene, VRN1, is upstream of FLOWERING LOCUS T. Plant J 58:668–681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shin-Young H, Sangmin L, Pil JS, Moon-Sik Y, Chung-Mo P (2010) Identification and molecular characterization of a Brachypodium distachyon GIGANTEA gene: functional conservation in monocot and dicot plants. Plant Mol Biol 72:485–497

    Article  Google Scholar 

  • Shitsukawa N, Ikari C, Shimada S, Kitagawa S, Sakamoto K, Saito H, Ryuto H, Fukumishi N, Abe T, Takumi S, Nasuda S, Murai K (2007) The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet Syst 82:167–170

    Article  CAS  PubMed  Google Scholar 

  • Slafer GA (2003) Genetic basis of yield as viewed from a crop physiologists perspective. Ann Appl Biol 142:117–128

    Article  Google Scholar 

  • Slafer GA, Rawson HM (1994) Sensitivity of wheat phasic development to major environmental factors: a re-examination of some assumptions made by physiologists and modellers. Aust J Plant Physiol 21:393–426

    Article  Google Scholar 

  • Slafer GA, Abeledo LG, Miralles DJ, Gonzalez FG, Whitechurch EM (2001) Photoperiod sensitivity during stem elongation as an avenue to raise potential yield in wheat. Euphytica 119:191–197

    Article  Google Scholar 

  • Stracke S, Börner A (1998) Molecular mapping of the photoperiod response gene ea7 in barley. Theor Appl Genet 97:797–800

    Article  CAS  Google Scholar 

  • Szűcs P, Karsai I, von Zitzewitz J, Mészáros K, Cooper LL, Gu YQ, Chen TH, Hayes PM, Skinner JS (2006) Positional relationships between photoperiod response QTL and photoreceptor and vernalization genes in barley. Theor Appl Genet 112:1277–1285

    Article  PubMed  Google Scholar 

  • Takata N, Saito S, Saito CT, Uemura M (2010) Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators. BMC Evol Biol 10:126

    Article  PubMed Central  PubMed  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Teulat B, Merah O, Souyris I, This D (2001) QTLs for agronomic traits from a Mediterranean barley progeny grown in several environments. Theor Appl Genet 103:774–787

    Article  CAS  Google Scholar 

  • Turck F, Fornara F, Coupland G (2008) Regulation and identity of Florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594

    Article  CAS  PubMed  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  CAS  PubMed  Google Scholar 

  • von Korff M, Wang H, Leon J, Pillen K (2006) AB-QTL analysis in spring barley. II: Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 112(7):1221–1231

    Article  Google Scholar 

  • von Korff M, Grando S, Del Greco A, This D, Baum M, Ceccarelli S (2008) Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor Appl Genet 117(5):653–669

    Article  Google Scholar 

  • von Korff M, Léon J, Pillen K (2010) Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 121(8):1455–1464

    Article  Google Scholar 

  • Waddington SR, Cartwright PM, Wall PC (1983) A quantitative scale of spike initial and pistil development in barley and wheat. Ann Bot 51:119–130

    Google Scholar 

  • Wang G, Schmalenbach I, von Korff M, Léon J, Kilian B, Rode J, Pillen K (2010) Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a DH-population and a set of wild barley introgression lines. Theor Appl Genet 120(8):1559–1574

    Article  PubMed Central  PubMed  Google Scholar 

  • Weltzien E (1988) Evaluation of barley (Hordeum vulgare L) landrace populations originating from different growing regions in the near East. Plant Breed 101:95–106

    Article  Google Scholar 

  • Weltzien E (1989) Differentiation among barley landrace populations from the near East. Euphytica 43:29–39

    Article  Google Scholar 

  • Whitechurch EM, Slafer GA, Miralles DJ (2007) Variability in the duration of stem elongation in wheat genotypes and sensitivity to photoperiod and vernalization. J Agron Crop Sci 193(2):131–137

    Article  Google Scholar 

  • Wilhelm EP, Turner AS, Laurie DA (2009) Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor Appl Genet 118:285–294

    Article  CAS  PubMed  Google Scholar 

  • Worland T, Snape JW (2001) Genetic basis of worldwide wheat varietal improvement. In: Bonjean AP, Angus WJ (eds) The world wheat book: a history of wheat breeding. Lavoisier Publishing, Paris, pp 59–100

    Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 6:761–767

    Article  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A 100:6263–6268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli M, Bonafede A, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci U S A 103:19581–19586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yasuda S, Hayashi J, Moriya I (1993) Genetic constitution for spring growth habit and some other characters in barley cultivars in the Mediterranean coastal regions. Euphytica 70:77–83

    Article  Google Scholar 

  • Yin X (2005) Crop system dynamics: an ecophysiological simulation model for genotype-by-environment interactions. Wageningen Academic, Wageningen

    Book  Google Scholar 

  • Zakhrabekova S, Gough SP, Braumann I, Müller AH, Lundqvist J, Ahmann K, Dockter C, Matyszczak I, Kurowska M, Druka A, Waugh R, Graner A, Stein N, Steuernagel B, Lundqvist U, Hansson M (2012) Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. Proc Natl Acad Sci U S A 109:4326–4331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria von Korff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drosse, B., Campoli, C., Mulki, A., von Korff, M. (2014). Genetic Control of Reproductive Development. In: Kumlehn, J., Stein, N. (eds) Biotechnological Approaches to Barley Improvement. Biotechnology in Agriculture and Forestry, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44406-1_5

Download citation

Publish with us

Policies and ethics