Skip to main content

Genomic Selection in Barley Breeding

  • Chapter
  • First Online:
Biotechnological Approaches to Barley Improvement

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 69))

Abstract

Genomic Selection is the improvement of breeding populations by using genome-wide markers for selection. In this breeding method, a calibration population is simultaneously phenotyped for traits of interest and genotyped with a genome-wide set of markers. Then, a quantitative genetic model for genomic prediction is trained using both the phenotypic and genotypic data. In subsequent selection cycles, individuals from a breeding population are only genotyped with the same markers, and their genomic estimated breeding values (GEBV) are calculated with the statistical model. Individuals with a high GEBV are selected for the next cycle. Genomic Selection leads to significant cost savings and to an increased selection gain per time unit as costly and time-consuming phenotypic selection does not have to be performed in every selection cycle. Both simulations and empirical studies showed a high accuracy of genomic prediction in barley breeding populations. The high level of linkage disequilibrium and the close genetic relationship present in barley breeding material allow the use of relatively small marker sets to test populations for Genomic Selection in barley breeding and suggest that this method will be highly useful for barley breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht T, Wimmer V, Auinger HJ, Erbe M, Knaak C, Ouzunova M, Simianer H, Schön CC (2011) Genome-based prediction of testcross values in maize. Theor Appl Genet 123:339–350

    Article  PubMed  Google Scholar 

  • Asoro FG, Newell MA, Beavis WD, Scott MP, Jannink JL (2011) Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome J 4:132

    Article  Google Scholar 

  • Bernardo R (2010) Genomewide selection with minimal crossing in self-pollinated crops. Crop Sci 50:624

    Article  Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082

    Article  Google Scholar 

  • Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clark SA, Hickey JM, van der Werf JHJ (2011) Different models of genetic variation and their effect on genomic evaluation. Genet Sel Evol 43:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Crossa J, Campos GDL, Pérez P, Gianola D, Burgueño J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J, Arief V, Banziger M, Braun HJ (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daetwyler HD, Villanueva B, Woolliams J (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One 3:e3395

    Article  PubMed Central  PubMed  Google Scholar 

  • Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams J (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics 185:1021–1031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes JM (2009) Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182:375–385

    Article  PubMed Central  PubMed  Google Scholar 

  • Elshire R, Glaubitz J (2011) A robust, simple, genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamblin MT, Buckler ES, Jannink JL (2011) Population genetics of genomics-based crop improvement methods. Trends Genet 27:98–106

    Article  CAS  PubMed  Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009a) Genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443

    Article  CAS  PubMed  Google Scholar 

  • Hayes BJ, Visscher PM, Goddard ME (2009b) Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res 91:47–60

    Article  CAS  Google Scholar 

  • Hayes BJ, Pryce J, Chamberlain AJ, Bowman PJ, Goddard ME (2010) Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genet 6:e1001139

    Article  PubMed Central  PubMed  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1

    Article  CAS  Google Scholar 

  • Heffner E, Jannink J, Sorrells M (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65–75

    Article  Google Scholar 

  • Henderson C (1973) Sire evaluation and genetic trends. J Anim Sci 1973:10–41

    Google Scholar 

  • Heslot N, Yang HP, Sorrells ME, Jannink JL (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146

    Article  Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genet 9:166–177

    Article  CAS  Google Scholar 

  • Jannink J, Smith K, Lorenz A (2012) Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Sci 52:1609–1621

    Article  Google Scholar 

  • Kandemir N, Jones BL, Wesenberg DM, Ullrich SE, Kleinhofs A (2000) Marker-assisted analysis of three grain yield QTL in barley (Hordeum vulgare L.) using near isogenic lines. Mol Breed 3:157–167

    Article  Google Scholar 

  • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Int Joint Conf Artif Intell 14:1137–1145

    Google Scholar 

  • König S, Simianer H, Willam A (2009) Economic evaluation of genomic breeding programs. J Dairy Sci 92:382–391

    Article  PubMed  Google Scholar 

  • Kumar S, Chagné D, Bink MCAM, Volz RK, Whitworth C, Carlisle C (2012) Genomic selection for fruit quality traits in apple (Malus x domestica Borkh.). PLoS One 7:e36674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161

    Article  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen THE (2009) Accuracy of breeding values of ‘unrelated’ individuals predicted by dense SNP genotyping. Genet Sel Evol 41:35

    Article  PubMed Central  PubMed  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ober U, Ayroles J, Stone E, Richards S, Zhu D (2012) Using whole-genome sequence data to predict quantitative trait phenotypes in Drosophila melanogaster. PLoS Genet 8:e1002685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pérez P, de Los Campos G, Crossa J, Gianola D (2010) Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian linear regression package in R. Plant Genome 3:106

    Article  PubMed Central  PubMed  Google Scholar 

  • Piepho HP (2009) Ridge regression and extensions for genomewide selection in maize. Crop Sci 49:1165

    Article  Google Scholar 

  • Piepho HP, Möhring J, Melchinger AE, Büchse A (2007) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161:209–228

    Article  Google Scholar 

  • Piyasatian N, Fernando RL, Dekkers JCM (2007) Genomic selection for marker-assisted improvement in line crosses. Theor Appl Genet 115:665–674

    Article  CAS  PubMed  Google Scholar 

  • Reif J, Melchinger A, Frisch M (2005) Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management. Crop Sci 45:1–7

    Article  Google Scholar 

  • Resende MDV, Resende MFR, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA, Pappas GJ, Kilian A, Grattapaglia D (2012a) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194:116–128

    Article  PubMed  Google Scholar 

  • Resende MFR, Muñoz P, Resende MDV, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M (2012b) Accuracy of genomic selection methods in a standard dataset of loblolly pine (Pinus taeda L.). Genetics 190:1503–1510

    Article  PubMed Central  PubMed  Google Scholar 

  • Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220

    Article  CAS  PubMed  Google Scholar 

  • Rode J, Ahlemeyer J, Friedt W, Ordon F (2012) Identification of marker-trait associations in the German winter barley breeding gene pool (Hordeum vulgare L.). Mol Breed 30:831–843

    Article  Google Scholar 

  • Technow F, Riedelsheimer C, Schrag T, Melchinger A (2012) Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects. Theor Appl Genet 125(6):1181–1194

    Article  PubMed  Google Scholar 

  • Thorwarth P (2012) Genomic prediction in self-fertilizing plants. Master’s thesis, University of Hohenheim

    Google Scholar 

  • Whittaker JC, Thompson R, Denham MC (2000) Marker-assisted selection using ridge regression. Genet Res 75:249–252

    Article  CAS  PubMed  Google Scholar 

  • Wimmer V, Albrecht T, Auinger HJ, Schön CC (2012) Synbreed: a framework for the analysis of genomic prediction data using R. Bioinformatics 28:2086–2087

    Article  CAS  PubMed  Google Scholar 

  • Wong CK, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Liu J, Ding X, Bijma P, de Koning DJ, Zhang Q (2010) Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix. PLoS One 5:1–8

    Google Scholar 

  • Zhao Y, Gowda M, Longin F, Würschum T, Ranc N, Reif J (2012) Impact of selective genotyping in the training population on accuracy and bias of genomic selection. Theor Appl Genet 125(4):707–713

    Article  CAS  PubMed  Google Scholar 

  • Zhong S, Dekkers JCM, Fernando RL, Jannink JL (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl J. Schmid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmid, K.J., Thorwarth, P. (2014). Genomic Selection in Barley Breeding. In: Kumlehn, J., Stein, N. (eds) Biotechnological Approaches to Barley Improvement. Biotechnology in Agriculture and Forestry, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44406-1_19

Download citation

Publish with us

Policies and ethics