Advertisement

Development of Sequence Resources

  • Nils Stein
Chapter
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 69)

Abstract

Progress in sequencing the barley genome has lagged behind that made in small genome plant species as well as in so-called cash crops that have much higher levels of investment in research and development. However, by exploiting a range of different sequencing technologies and adopting a diverse spectrum of approaches, over the past 10 years, comprehensive sequence resources for barley have been developed. These include sequence tags derived from commonly used RFLP markers, systematically sequenced expressed sequence tags (ESTs), BAC sequences that emerged from map-based cloning of specific target genes and more recently from tiled BAC clones positioned on a physical map, survey sequences from flow-sorted chromosomes and latterly deep whole-genome shotgun sequences. Here I provide a summary of currently available genomic sequence resources, outline planned future developments and highlight areas of application for these resources in barley research and ultimately in crop improvement.

Keywords

Bacterial Artificial Chromosome Bacterial Artificial Chromosome Clone Whole Genome Shotgun Barley Chromosome Restriction Fragment Length Polymorphism Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I kindly acknowledge Burkhard Steuernagel and Martin Mascher for contributing the graphics to Fig. 14.1. I’d like to thank Catherine Feuillet and Robbie Waugh for the very helpful comments on the manuscript.

References

  1. Ariyadasa R, Mascher M, Nussbaumer T, Schulte D, Frenkel Z, Poursarebani N, Zhou R, Steuernagel B, Gundlach H, Taudien S, Felder M, Platzer M, Himmelbach A, Schmutzer T, Hedley P, Muehlbauer G, Scholz U, Korol A, Mayer K, Waugh R, Langridge P, Graner A, Stein N (2014) A sequence-ready physical map of barley anchored genetically by two million SNPs. Plant Physiol 164:412–423PubMedCentralPubMedCrossRefGoogle Scholar
  2. Becker J, Vos P, Kuiper M, Salamini F, Heun M (1995) Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 249:65–73PubMedCrossRefGoogle Scholar
  3. Bennetzen JL, Freeling M (1993) Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends Genet 9:259–261PubMedCrossRefGoogle Scholar
  4. Bennetzen JL, Freeling M (1997) The unified grass genome: synergy in synteny. Genome Res 7:301–306PubMedGoogle Scholar
  5. Berkman P, Skarshewski A, Manoli S, Lorenc M, Stiller J, Smits L, Lai K, Campbell E, Kubaláková M, Šimková H, Batley J, Doležel J, Hernandez P, Edwards D (2011) Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor Appl Genet 124:423–432PubMedCrossRefGoogle Scholar
  6. Chia J-M, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC, Gore M, Guill KE, Holland J, Hufford MB, Lai J, Li M, Liu X, Lu Y, McCombie R, Nelson R, Poland J, Prasanna BM, Pyhajarvi T, Rong T, Sekhon RS, Sun Q, Tenaillon MI, Tian F, Wang J, Xu X, Zhang Z, Kaeppler SM, Ross-Ibarra J, McMullen MD, Buckler ES, Zhang G, Xu Y, Ware D (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44:803–807PubMedCrossRefGoogle Scholar
  7. Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960–968PubMedCentralPubMedCrossRefGoogle Scholar
  8. Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney R, Szucs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582PubMedCentralPubMedCrossRefGoogle Scholar
  9. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) A homologue of Antirrhinum CENTRORADIALIS is a component of the quantitative photoperiod and vernalization independent EARLINESS PER SE 2 locus in cultivated barley. Nat Genet 44:1388–1392PubMedCrossRefGoogle Scholar
  10. Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82:17–26CrossRefGoogle Scholar
  11. Doležel J, Kubaláková M, Paux E, Bartoš J, Feuillet C (2007) Chromosome-based genomics in the cereals. Chromosome Res 15:51–66PubMedCrossRefGoogle Scholar
  12. Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, Rostoks N, Schreiber A, Wise R, Close T, Kleinhofs A, Graner A, Schulman A, Langridge P, Sato K, Hayes P, McNicol J, Marshall D, Waugh R (2006) An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics 6:202–211PubMedCrossRefGoogle Scholar
  13. Eversole K, Graner A, Stein N (2009) Wheat and barley genome sequencing. In: Muehlbauer GJ, Feuillet C (eds) Genetics and genomics of the Triticeae. Springer, New York, NY, pp 713–742CrossRefGoogle Scholar
  14. Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16:77–88PubMedCrossRefGoogle Scholar
  15. Furbank RT, Tester M (2011) Phenomics – technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644PubMedCrossRefGoogle Scholar
  16. Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256PubMedCrossRefGoogle Scholar
  17. Hernandez P, Martis M, Dorado G, Pfeifer M, Gálvez S, Schaaf S, Jouve N, Šimková H, Valárik M, Doležel J, Mayer KFX (2011) Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J 69:377–386PubMedCrossRefGoogle Scholar
  18. Hufford MB, Xu X, van Heerwaarden J, Pyhajarvi T, Chia J-M, Cartwright RA, Elshire RJ, Glaubitz JC, Guill KE, Kaeppler SM, Lai J, Morrell PL, Shannon LM, Song C, Springer NM, Swanson-Wagner RA, Tiffin P, Wang J, Zhang G, Doebley J, McMullen MD, Ware D, Buckler ES, Yang S, Ross-Ibarra J (2012) Comparative population genomics of maize domestication and improvement. Nat Genet 44(7):808–811PubMedCrossRefGoogle Scholar
  19. Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J, Wang B, Liu Z, Chen J, Li W, Zhang M, Xie S, Lai J (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44(7):812–815PubMedCrossRefGoogle Scholar
  20. Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705PubMedCrossRefGoogle Scholar
  21. Kurtz S, Narechania A, Stein J, Ware D (2008) A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes. BMC Genomics 9:517PubMedCentralPubMedCrossRefGoogle Scholar
  22. Leroy P, Guilhot N, Sakai H, Bernard A, Choulet F, Theil S, Reboux S, Amano N, Flutre T, Pelegrin C, Ohyanagi H, Seidel M, Giacomoni F, Reichstadt M, Alaux M, Gicquello E, Legeai F, Cerutti L, Numa H, Tanaka T, Mayer K, Itoh T, Quesneville H, Feuillet C (2012) TriAnnot: a versatile and high performance pipeline for the automated annotation of plant genomes. Front Plant Sci 3:5PubMedCentralPubMedCrossRefGoogle Scholar
  23. Lonardi S, Duma D, Alpert M, Cordero F, Beccuti M, Bhat PR, YonghuiWu, Ciardo G, Alsaihati B, Ma Y, Wanamaker S, Resnik J, Close TJ (2012) Barcoding-free BAC pooling enables combinatorial selective sequencing of the barley gene space. arXiv:11124438v1 [q-bioGN]Google Scholar
  24. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141PubMedCrossRefGoogle Scholar
  25. Martis MM, Zhou R, Haseneyer G, Schmutzer T, Vrána J, Kubaláková M, König S, Kugler KG, Scholz U, Hackauf B, Korzun V, Schön C-C, Doležel J, Bauer E, Mayer KFX, Stein N (2013) Reticulate evolution of the rye genome. Plant Cell 25:3685–3698PubMedCentralPubMedCrossRefGoogle Scholar
  26. Mascher M, Jost M, Kuon J-E, Himmelbach A, Aßfalg A, Beier S, Scholz U, Graner A, Stein N (2014) Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol 15:R78PubMedCentralPubMedCrossRefGoogle Scholar
  27. Matsumoto T, Tanaka T, Sakai H, Amano N, Kanamori H, Kurita K, Kikuta A, Kamiya K, Yamamoto M, Ikawa H, Fujii N, Hori K, Itoh T, Sato K (2011) Comprehensive sequence analysis of 24,783 barley full-length cDNAs derived from 12 clone libraries. Plant Physiol 156:20–28PubMedCentralPubMedCrossRefGoogle Scholar
  28. Mayer KFX, Taudien S, Martis M, Simkova H, Suchankova P, Gundlach H, Wicker T, Petzold A, Felder M, Steuernagel B, Scholz U, Graner A, Platzer M, Dolezel J, Stein N (2009) Gene content and virtual gene order of barley chromosome 1H. Plant Physiol 151:496–505PubMedCentralPubMedCrossRefGoogle Scholar
  29. Mayer KFX, Martis M, Hedley P, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Doležel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263PubMedCentralPubMedCrossRefGoogle Scholar
  30. Michalek W, Künzel G, Graner A (1999) Sequence analysis and gene identification in a set of mapped RFLP markers in barley (Hordeum vulgare). Genome 42:849–853PubMedCrossRefGoogle Scholar
  31. Moore G, Devos KM, Wang Z, Gale MD (1995) Grasses, line up and form a circle. Curr Biol 5:737–739PubMedCrossRefGoogle Scholar
  32. Muñoz-Amatriaín M, Moscou MJ, Bhat PR, Svensson JT, Bartoš J, Suchánková P, Šimková H, Endo TR, Fenton RD, Lonardi S, Castillo AM, Chao S, Cistué L, Cuesta-Marcos A, Forrest KL, Hayden MJ, Hayes PM, Horsley RD, Makoto K, Moody D, Sato K, Vallés MP, Wulff BBH, Muehlbauer GJ, Doležel J, Close TJ (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4:238–249CrossRefGoogle Scholar
  33. Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474PubMedCrossRefGoogle Scholar
  34. Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16,000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53:90–101PubMedCrossRefGoogle Scholar
  35. Qi X, Stam P, Lindhout P (1998) Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet 96:376PubMedCrossRefGoogle Scholar
  36. Ramsay L, Macaulay M, Cardle L, Morgante M, Sd I, Maestri E, Powell W, Waugh R (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J 17:415–425PubMedCrossRefGoogle Scholar
  37. Sato K, Nankaku N, Takeda K (2009) A high-density transcript linkage map of barley derived from a single population. Heredity 103:110–117PubMedCrossRefGoogle Scholar
  38. Sato K, Motoi Y, Yamaji N, Yoshida H (2011) 454 sequencing of pooled BAC clones on chromosome 3H of barley. BMC Genomics 12:246PubMedCentralPubMedCrossRefGoogle Scholar
  39. Schulte D, Close TJ, Graner A, Langridge P, Matsumoto T, Muehlbauer G, Sato K, Schulman AH, Waugh R, Wise RP, Stein N (2009) The international barley sequencing consortium–at the threshold of efficient access to the barley genome. Plant Physiol 149:142–147PubMedCentralPubMedCrossRefGoogle Scholar
  40. Service R (2006) The race for the $1000 genome. Science 311:1544–1546PubMedCrossRefGoogle Scholar
  41. Šimková H, Svensson JT, Condamine P, Hřibová E, Suchánková P, Bhat PR, Bartoš J, Šafář J, Close TJ, Doležel J (2008) Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9:294PubMedCentralPubMedCrossRefGoogle Scholar
  42. Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M, Graner A, Wobus U (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol 146:1738–1758PubMedCentralPubMedCrossRefGoogle Scholar
  43. Stein N (2007) Triticeae genomics: advances in sequence analysis of large genome cereal crops. Chromosome Res 15:21–31PubMedCrossRefGoogle Scholar
  44. Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Graner A (2007) A 1000 loci transcript map of the barley genome – new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839PubMedCrossRefGoogle Scholar
  45. Steuernagel B, Taudien S, Gundlach H, Seidel M, Wicker T, Ariyadasa R, Schulte D, Petzold A, Felder M, Graner A, Scholz U, Mayer K, Platzer M, Stein N (2009) De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley. BMC Genomics 10:547PubMedCentralPubMedCrossRefGoogle Scholar
  46. Suchánková P, Kubaláková M, Kovářová P, Bartoš J, Číhalíková J, Molnár-Láng M, Endo TR, Doležel J (2006) Dissection of the nuclear genome of barley by chromosome flow sorting. Theor Appl Genet 113:651–659PubMedCrossRefGoogle Scholar
  47. Svensson JT, Crosatti C, Campoli C, Bassi R, Stanca AM, Close TJ, Cattivelli L (2006) Transcriptome analysis of cold acclimation in barley Albina and Xantha mutants. Plant Physiol 141:257–270PubMedCentralPubMedCrossRefGoogle Scholar
  48. Taudien S, Steuernagel B, Ariyadasa R, Schulte D, Schmutzer T, Groth M, Felder M, Petzold A, Scholz U, Mayer KF, Stein N, Platzer M (2011) Sequencing of BAC pools by different next generation sequencing platforms and strategies. BMC Res Notes 4:411PubMedCentralPubMedCrossRefGoogle Scholar
  49. The ENCODE project consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74PubMedCentralCrossRefGoogle Scholar
  50. The International Barley Genome Sequencing Consortium (IBSC) (2012) A physical, genetical and functional sequence assembly of the barley genome. Nature 491:711–716Google Scholar
  51. The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768CrossRefGoogle Scholar
  52. The International Wheat Genome Sequencing Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345. doi:10.1126/science.1251788Google Scholar
  53. Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422PubMedGoogle Scholar
  54. Thiel T, Graner A, Waugh R, Grosse I, Close TJ, Stein N (2009) Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice. BMC Evol Biol 9:209PubMedCentralPubMedCrossRefGoogle Scholar
  55. Varshney RK, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1116PubMedCrossRefGoogle Scholar
  56. Wicker T, Schlagenhauf E, Graner A, Close TJ, Keller B, Stein N (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genomics 7:275PubMedCentralPubMedCrossRefGoogle Scholar
  57. Wicker T, Narechania A, Sabot F, Stein J, Vu GTH, Graner A, Ware D, Stein N (2008) Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genomics 9:518PubMedCentralPubMedCrossRefGoogle Scholar
  58. Wicker T, Taudien S, Houben A, Keller B, Graner A, Platzer M, Stein N (2009) A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J 59:712–722PubMedCrossRefGoogle Scholar
  59. Wicker T, Mayer KFX, Gundlach H, Steuernagel B, Scholz U, Šimková H, Kubaláková M, Choulet F, Taudien S, Platzer M, Feuillet C, Fahima T, Budak H, Keller B, Doležel J, Stein N (2011) Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 23:1706–1718PubMedCentralPubMedCrossRefGoogle Scholar
  60. Wise R, Caldo R, Hong L, Shen L, Cannon E, Dickerson J (2007a) BarleyBase/PLEXdb: a unified expression profiling database for plants and plant pathogens. In: Edwards D (ed) Methods in molecular biology, plant bioinformatics – methods and protocols. Humana, Totowa, NJ, pp 347–363Google Scholar
  61. Wise R, Moscou M, Bogdanove A, Whitham SA (2007b) Transcript profiling in host-pathogen interactions. Annu Rev Phytopathol 45:329–369PubMedCrossRefGoogle Scholar
  62. Zhang H, Sreenivasulu N, Weschke W, Stein N, Rudd S, Radchuk V, Potokina E, Scholz U, Schweizer P, Zierold U, Langridge P, Varshney RK, Wobus U, Graner A (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J 40:276–290PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Seeland OT GaterslebenGermany

Personalised recommendations