Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 69))

  • 1611 Accesses

Abstract

Molecular farming presents a sustainable, green technology for the production of high value proteins. Barley has a number of qualities that make it an excellent seed-based platform for the manufacturing of recombinant proteins. Extensive domestication and human dependency make its cultivation, processing and quality control a very manageable task. High level of self-pollination provides for efficient biological containment, and tissue-specific accumulation of recombinant proteins in grains offers a stable, endotoxin-free environment for valuable proteins. A number of proteins have been produced by molecular farming in barley, and over 40 recombinant human growth factors are already manufactured in barley for the life science and medical research market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affymetrix. http://www.medprobe.com/files//2009%20spring%20Procarta.pdf. Cited May 2013

  • Associates of Cape Cod Inc. http://www.acciusa.com/cts/test/index.html. Cited 5 June 2013

  • Bardor M, Faveeuw C, Fitchette A-C, Gilbert D, Galas L, Trottein F, Faye L, Lerouge P (2003) Immunoreactivity in mammals of two typical plant glyco-epitopes, core a(1,3)-fucose and core xylose. Glycobiology 13(6):427–434. doi:10.1093/glycob/cwg024

    Article  CAS  PubMed  Google Scholar 

  • Basaran P, Rodríguez-Cerezo E (2008) Plant molecular farming: opportunities and challenges. Crit Rev Biotechnol 28:153–172

    Article  PubMed  Google Scholar 

  • Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, Szarka S, Kuhlman P, Murray E, Morck D, Moloney MM (2010) Seed-based expression systems for plant molecular farming. Plant Biotechnol J 8(5):588–606

    Article  CAS  PubMed  Google Scholar 

  • Canadian Seed Growers’ Association (2013) Circular 6, Table 2.4.2, Revision 1.8.2013, pp 2–6

    Google Scholar 

  • Caspers MPM, Lok F, Sinjorgo KMC, van Zeijl MJ, Nielsen KA, Cameron-Mills V (2001) Synthesis, processing and export of cytoplasmic endo-1,4-xylanase from barley aleurone during germination. Plant J 26:191–204

    Article  CAS  PubMed  Google Scholar 

  • Cho MJ, Choi HW, Jiang W, Ha CD, Lemaux PG (2002) Endosperm-specific expression of green fluorescent protein driven by the hordein promoter is stably inherited in transgenic barley (Hordeum vulgare) plants. Physiol Plant 115:144–151

    Article  CAS  PubMed  Google Scholar 

  • Christou P, Stoger E, Twyman RM (2008) Monocot expression systems for molecular farming. In: Fersht A (ed) Protein science encyclopedia. Wiley, New York. doi:10.1002/9783527610754.tr02

    Google Scholar 

  • Drake PM, Chargelegue DM, Vine ND, van Dolleweerd CJ, Obregon P, Ma JK (2003) Rhizosecretion of a monoclonal antibody protein complex from transgenic tobacco roots. Plant Mol Biol 52(1):233–241

    Article  CAS  PubMed  Google Scholar 

  • Epstein J, Kelly CE, Lee MM, Donahue PK (1990) Effect of E.coli endotoxin on mammalian cell growth and recombinant protein production. In Vitro Cell Dev Biol 26:1121–1122

    Article  CAS  PubMed  Google Scholar 

  • Erlendsson LS, Muench MO, Hellman U, Hrafnkelsdóttir SM, Jonsson A, Balmer Y, Mäntylä E, Orvar BL (2010) Barley as a green factory for the production of functional Flt3 ligand. Biotechnol J 5(2):163–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eskelin K, Ritala A, Suntio T, Blumer S, Holkeri H, Wahlström EH, Baez J, Mäkinen K, Maria NA (2009) Production of a recombinant full-length collagen type I alpha-1 and of a 45-kDa collagen type I alpha-1 fragment in barley seeds. Plant Biotechnol J 7:657–672

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara Y, Aiki Y, Yang L, Takaiwa F, Kosaka NM (2010) Extraction and purification of human interleukin-10 from transgenic rice seeds. Protein Expr Purif 72:125–130

    Article  CAS  PubMed  Google Scholar 

  • Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8(5):564–587. doi:10.1111/j.1467-7652.2009.00497.x

    Article  CAS  PubMed  Google Scholar 

  • Han J, Lakshman DK, Galvez LC, Mitra S, Baenziger PS, Mitra A (2012) Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum. BMC Plant Biol 12:33. doi:10.1186/1471-2229-12-33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hensel G (2011) Genetic transformation of Triticeae cereals for molecular farming. In: Alvarez M (ed) Genetic transformation. InTech, Rijeka, pp 171–192. doi:10.5772/868, http://www.intechopen.com/books/genetic-transformation

  • Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2008) Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J Plant Physiol 165:71–82

    Article  CAS  PubMed  Google Scholar 

  • Hensel G, Himmelbach A, Chen W, Douchkov DK, Kumlehn J (2011) Transgene expression systems in the Triticeae cereals. J Plant Physiol 168:30–44

    Article  CAS  PubMed  Google Scholar 

  • Hermannsson J, Kristjansdottir TA, Stefansson TS, Hallsson JH (2010) Measuring gene flow in barley fields under Icelandic sub-arctic conditions using closed-flowering varieties. Icel Agric Sci 23:51–59

    Google Scholar 

  • Horvath H, Huang J, Wong O, Kohl E, Okita T, Kannangara CG, von Wettstein D (2000) The production of recombinant proteins in transgenic barley grains. Proc Natl Acad Sci U S A 97(4):1914–1919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang N, Rodriguez RL, Hagie FE (2006) Expression of human milk proteins in transgenic plants. US Patent 7,718,851

    Google Scholar 

  • Joensuu JJ, Kotiaho M, Teeri TH, Valmu L, Nuutila AM, Oksman-Caldentey KM, Niklander-Teeri V (2006) Glycosylated F4 (K88) fimbrial adhesin FaeG expressed in barley endosperm induces ETEC-neutralizing antibodies in mice. Transgenic Res 15(3):359–373

    Article  CAS  PubMed  Google Scholar 

  • Kamenarova K, Abumhadi N, Gecheff K, Atanassov A (2005) Molecular farming in plants: an approach of agricultural biotechnology. J Cell Mol Biol 4:77–86

    Google Scholar 

  • Kamenarova K, Gecheff K, Stoyanova M, Muhovski Y, Anzai H, Atanassov A (2007) Production of recombinant human lactoferrin in transgenic barley. Biotechnol Biotech Equip 21(1):18–27

    Article  CAS  Google Scholar 

  • Lieder R, Gaware VS, Thormodsson F, Einarsson JM, Ng CH, Gislason J, Masson M, Petersen PH, Sigurjonsson OE (2013) Endotoxins affect bioactivity of chitosan derivatives in cultures of bone marrow-derived human mesenchymal stem cells. Acta Biomater 9(1):4771–4778. doi:10.1016/j.actbio.2012.08.043

    Article  CAS  PubMed  Google Scholar 

  • Ma JK, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M, Schillberg S, Sparrow P, Stoger E, Twyman RM (2005) Molecular farming for new drugs and vaccines. Current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep 6(7):593–599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magnusdottir A, Vidarsson H, Björnsson JM, Örvar BL (2013) Barley grains for the production of endotoxin-free growth factors. Trends Biotechnol 31(10):572–580

    Article  CAS  PubMed  Google Scholar 

  • Millet J (1977) Characterization of a protein inhibitor of intracellular protease from Bacillus subtilis. FEBS Lett 74:59–61

    Article  CAS  PubMed  Google Scholar 

  • Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen G, Sameri M, Tagiri A, Honda I, Watanabe Y, Kanamori H, Wicker T, Stein N, Nagamura Y, Matsumoto T, Komatsuda T (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci U S A 107(1):490–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nochi T, Takagi H, Yuki Y, Yang L, Masumura T, Mejima M, Nakanishi U, Matsumura A, Uozumi A, Hiroi T, Morita S, Tanaka K, Takaiwa F, Kiyono H (2007) Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc Natl Acad Sci U S A 104(26):10986–10991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • ORF Genetics. http://orfgenetics.com/. Cited 9 July 2013

  • Patel M, Johnson JS, Brettell RIS, Jacobsen J, Xue GP (2000) Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Mol Breed 6:113–123

    Article  CAS  Google Scholar 

  • Penney CA, Thomas DR, Deen SS, Walmsley AM (2011) Plant-made vaccines in support of the millennium development goals. Plant Cell Rep 30(5):789–798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Protalix Inc. http://www.protalix.com/product-development/elelyso.asp. Cited 9 July 2013

  • Ramessar K, Capell T, Christou P (2008a) Molecular pharming in cereal crops. Phytochem Rev 7:579–592. doi:10.1007/s11101-008-9087-3 (Springer, Berlin)

    Article  CAS  Google Scholar 

  • Ramessar K, Sabalza M, Capell T, Christou P (2008b) Maize plants: an ideal production platform for effective and safe molecular pharming. Plant Sci 174:409–419

    Article  CAS  Google Scholar 

  • Ritala A, Nuutila AM, Aikasalo R, Kauppinen V, Tammisola J (2002) Measuring gene flow in the cultivation of transgenic barley. Crop Sci 42(1):278–285

    Article  CAS  PubMed  Google Scholar 

  • Ritala A, Wahlström EH, Holkeri H, Hafren A, Mäkeläinen K, Baez J, Mäkinen K, Nuutila AM (2008) Production of a recombinant industrial protein using barley cell cultures. Protein Expr Purif 59(2):274–281

    Article  CAS  PubMed  Google Scholar 

  • Ritala A, Leelavathi S, Oksman-Caldentey VS, Reddy K-M, Laukkanen M-L (2014) Recombinant barley-produced antibody for detection and immunoprecipitation of the major bovine milk allergen, b-lactoglobulin. Transgenic Res 23(3):477–87. doi:10.1007/s11248-014-9783-2

    Article  CAS  PubMed  Google Scholar 

  • Runkel L, Meier W, Pepinsky RB, Karpusas M, Whitty A, Kimball K, Brickelmaier M, Muldowney C, Jones W, Goelz SE (1998) Structural and functional differences between glycosylated and non-glycosylated forms of human interferon-beta (IFN-beta). Pharm Res 15(4):641–649

    Article  CAS  PubMed  Google Scholar 

  • SBH Sciences, Natick, MA, USA. http://www.sbhsciences.com/

  • Schünmann PHD, Coia G, Waterhouse PM (2002) Biopharming the SimpliRED™ HIV diagnostic reagent in barley, potato and tobacco. Mol Breed 9(2):113–121

    Article  Google Scholar 

  • Sharma AK, Sharma MK (2009) Plants as bioreactors: recent developments and emerging opportunities. Biotechnol Adv 27:811–832

    Article  CAS  PubMed  Google Scholar 

  • Stahl R, Horvath H, Van Fleet J, Voetz M, von Wettstein D, Wolf N (2002) T-DNA integration into the barley genome from single and double cassette vectors. Proc Natl Acad Sci U S A 99(4):2146–2151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stahl R, Luhrs R, Dargatz H (2009) Thaumatin from transgenic barley. US Patent Application, US 2009/0031458

    Google Scholar 

  • Steiner AM, Ruckenbauer P (1995) Germination of 110-year-old cereal and weed seeds, the Vienna Sample of 1877. Verification of effective ultra-dry storage at ambient temperature. Seed Sci Res 5:195–199

    Article  Google Scholar 

  • Stoger E, Ma JKC, Fischer R, Christou P (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:167–173

    Article  CAS  PubMed  Google Scholar 

  • Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15

    Article  CAS  PubMed  Google Scholar 

  • The Blood Bank, Landspitali University Hospital, Snorrabraut 60, Reykjavik 105, Iceland

    Google Scholar 

  • USDA (2006) NEPA 05-340-01r. http://www.aphis.usda.gov/brs/aphisdocs/05_34001r_ndd.pdf

  • Vickers CE, Xue G, Gresshoff PM (2006) A novel cis-acting element, ESP, contributes to high level endosperm-specific expression in an oat globulin promoter. Plant Mol Biol 62:195–214

    Article  CAS  PubMed  Google Scholar 

  • Wilhelmson A, Kallio PT, Oksman-Caldentey KM, Nuutila AM (2007) Heterologous expression of Vitreoscilla haemoglobin in barley (Hordeum vulgare). Plant Cell Rep 26(10):1773–1783

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Hirai T, Kato K, Hiwasa-Tanase K, Fukuda N, Ezura H (2010) Tomato is a suitable material for producing recombinant miraculin protein in genetically stable manner. Plant Sci 178:469–473

    Article  CAS  Google Scholar 

  • Zeder MA, Emshwiller E, Bradley DG, Smith BD (2006) Documenting domestication: the intersection of genetics and archaeology. Trends Genet 22(3):139–155

    Article  CAS  PubMed  Google Scholar 

  • Zimran A, Brill-Almon E, Chertkoff R, Petakov M, Blanco-Favela F, Muñoz ET, Solorio-Meza SE, Amato D, Duran G, Giona F, Heitner R, Rosenbaum H, Giraldo P, Mehta A, Park G, Phillips M, Elstein D, Altarescu G, Szleifer M, Hashmueli S, Aviezer D (2011) Pivotal trial with plant cell-expressed recombinant glucocerebrosidase, taliglucerase alfa, a novel enzyme replacement therapy for Gaucher disease. Blood 118(22):5767–5773. doi:10.1182/blood-2011-07-366955

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Árni Brynjólfsson and Brynhildur Ingvarsdóttir are thanked for assisting with layout of table and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einar Mäntylä .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mäntylä, E., Örvar, B.L. (2014). Molecular Farming. In: Kumlehn, J., Stein, N. (eds) Biotechnological Approaches to Barley Improvement. Biotechnology in Agriculture and Forestry, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44406-1_13

Download citation

Publish with us

Policies and ethics