Skip to main content

Responses to Phytophagous Arthropods

  • Chapter
  • First Online:
Book cover Biotechnological Approaches to Barley Improvement

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 69))

  • 1501 Accesses

Abstract

Barley (Hordeum vulgare L.) as other cereal species is targeted by different pests causing significant damages when the environmental and cultural conditions are favourable for their development. Although damage from field arthropods is not a major hazard for barley crops, this chapter summarises the main arthropod species considered as a threat of barley growth and seed yield, as well as the physical barriers and chemical compounds developed by Hordeum genotypes to combat insect attack, particularly aphid pests. New insights into the molecular mechanisms of barley–pest interactions and the use of novel molecular approaches are discussed. Finally, the integration of candidate barley genes with defence properties into plant genome to generate resistance against pests opens up future conventional plant-assessment programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahman I, Tuvesson S, Johasson M (2000) Does indole alkaloid gramine confer resistance in barley to the aphid Rhopalosiphum padi? J Chem Ecol 26:233–255

    Article  CAS  Google Scholar 

  • Alfonso-Rubi J, Ortego F, Castañera P, Carbonero P, Diaz I (2003) Transgenic expression of trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the weevil Sitophilus oryzae. Transgenic Res 12:23–31

    Article  CAS  PubMed  Google Scholar 

  • Altpeter F, Diaz I, McAuslane H, Gaddour K, Carbonero P, Vasil IK (1999) Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Mol Breed 5:53–63

    Article  CAS  Google Scholar 

  • Alvarez-Alfageme F, Martinez M, Pascual-Ruiz S, Castañera P, Diaz I, Ortego F (2007) Effects of potato plants expressing a barley cystatin on the predatory bug Podisus maculiventris via herbivorous prey feeding on the plant. Transgenic Res 16:1–13

    Article  CAS  PubMed  Google Scholar 

  • Argandoña VH, Chaman M, Cardemil L, Muñoz O, Zuñiga GE, Coprcuera LJ (2001) Ethylene production and peroxidase activity in aphid-infested barley. J Chem Ecol 27:53–67

    Article  PubMed  Google Scholar 

  • Botha AM, Lacock L, van Niekerk C, Matsioloko MT, du Preez FB, Loots S, Venter E, Kunert KJ, Cullis CA (2006) Is photosynthetic transcriptional regulation in Triticum aestivum L. cv. “TugelaDN” a contributing factor for tolerance to Diuraphis noxia (Homoptera: Aphididae)? Plant Cell Rep 25:41–54

    Article  CAS  PubMed  Google Scholar 

  • Boyko EV, Smith CM, Thara VK, Bruno JM, Deng Y, Starley SR, Klaahsen DL (2006) Molecular basis of plant gene expression during aphid invasion: wheat Pto- and Pts-like sequences are involved in interactions between wheat and Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol 99:1430–1445

    Article  CAS  PubMed  Google Scholar 

  • Broekgaarden C, Snoeren TAL, Dicke M, Vosman B (2011) Exploiting natural variation to identify insect-resistance genes. Plant Biotechnol J 9:819–825

    Article  CAS  PubMed  Google Scholar 

  • Carrillo L, Martinez M, Ramessar K, Cambra I, Castañera P, Ortego F, Diaz I (2011a) Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases. Plant Cell Rep 30:101–112

    Article  CAS  PubMed  Google Scholar 

  • Carrillo L, Martinez M, Alvarez-Alfageme F, Castañera P, Smagghe G, Diaz I, Ortego F (2011b) A barley cysteine-proteinase inhibitor reduces the performance of two aphid species in artificial diets and transgenic Arabidopsis plants. Transgenic Res 20:305–319

    Article  CAS  PubMed  Google Scholar 

  • Casaretto JA, Corcuera LJ (1998) Proteinase inhibitor accumulation in aphid infested barley leaves. Phytochemistry 49:2279–2286

    Article  CAS  Google Scholar 

  • Casaretto JA, Zuñiga GE, Corcuera LJ (2004) Abscisic acid and jasmonic acid affect proteinase inhibitor activities in barley leaves. J Plant Physiol 161:389–396

    Article  CAS  PubMed  Google Scholar 

  • Chaman ME, Corcuera LJ, Zúñiga GE, Cardemil L, Argandoña VH (2001) Induction of soluble and cell wall peroxidases by aphid infestation in barley. J Agric Food Chem 49:2249–2253

    Article  CAS  PubMed  Google Scholar 

  • Chaman ME, Copaja SV, Argandona VH (2003) Relationships between salicylic acid content, phenylalanine ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation. J Agric Food Chem 51:2227–2231

    Article  CAS  PubMed  Google Scholar 

  • Charity JA, Hughes P, Anderson MA, Bittisnich DJ, Whitecross M, Higgins TJV (2005) Pest and disease protection conferred by expression of barley β–hordothionin and Nicotiana alata proteinase inhibitor genes in transgenic tobacco. Funct Plant Biol 32:35–44

    Article  CAS  Google Scholar 

  • Collins RM, Afzal M, Ward DA, Prescott MC, Sait SM, Rees HH, Tomsett AB (2010) Differential proteomic analysis of Arabidopsis thaliana genotypes exhibiting resistance or susceptibility to the insect herbivore, Plutella xylostella. PLoS One 5:210103

    Google Scholar 

  • Corcuera LJ (1993) Biochemical basis for the resistance of barley to aphids. Phytochemistry 33:741–747

    Article  CAS  Google Scholar 

  • Davis JA, Radcliffe EB (2008) Reproduction and feeding behaviour of Myzus persicae on four cereals. J Econ Entomol 101:9–16

    Article  CAS  PubMed  Google Scholar 

  • Delp G, Gradin T, Åhman I, Jonsson LMV (2009) Microarray analysis of the interaction between the aphid Rhopalosiphum padi and host plants reveals both differences and similarities between susceptible and partially resistant barley lines. Mol Genet Genomics 281:233–248

    Article  CAS  PubMed  Google Scholar 

  • Ferry N, Stavroulakis S, Guan W, Davison GM, Bell HA, Weaver RJ, Down RE, Gatehouse JA, Gatehouse AMR (2011) Molecular interactions between wheat and cereal aphid (Sitobion avenae): analysis of changes to the wheat proteome. Proteomics 11:1985–2002

    Article  CAS  PubMed  Google Scholar 

  • Forslund K, Pettersson J, Bryngelsson T, Jonsson L (2000) Aphid infestation induces PR-proteins differentially in barley susceptible or resistant to the bird cherry-oat aphid (Rhopalosiphum padi). Physiol Plant 110:496–502

    Article  CAS  Google Scholar 

  • Gardenhire JH (1979) Breeding for greenbug Schizaphis graminum (Rodani) resistance in wheat and in other small grains. In: Harris MK (ed) Biology and breeding for resistance to arthropods and pathogens in agricultural plants. A&M University, College Station, TX, pp 237–244

    Google Scholar 

  • Gutsche A, Heng-Moss T, Sarath G, Twigg P, Xia Y, Lu G, Mornhinweg D (2009) Gene expression profiling of tolerant barley in response to Diuraphis noxia (Hemiptera: Aphididae) feeding. Bull Entomol Res 99:163–173

    Article  CAS  PubMed  Google Scholar 

  • Hogenhout SA, Bos JIB (2011) Effector proteins that modulate plant-insect interactions. Curr Opin Plant Biol 14:422–428

    Article  CAS  PubMed  Google Scholar 

  • Kellner M, Brantestam AK, Ahman I, Ninkovic V (2010) Plant volatile-induced aphid resistance in barley cultivars is related to cultivar age. Theor Appl Genet 121:1133–1139

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatiles emissions in nature. Science 291:2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Lara P, Ortego F, Gonzalez-Hidalgo E, Castañera P, Carbonero P, Diaz I (1999) Adaptation of Spodoptera exigua (Lepidoptera: Noctuidae) to barley trypsin inhibitor BTI-CMe expressed in transgenic tobacco. Transgenic Res 9:169–178

    Article  Google Scholar 

  • Larsson KAE, Saheed SA, Gradin T, Delp G, Karpinska B, Botha CEJ, Jonsson LMV (2011) Differential regulation of 3-aminomethylindole/N-methyl-3-aminomethylindole N-methyltransferase and gramine in barley by both biotic and abiotic stress conditions. Plant Physiol Biochem 49:96–102

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Hao F, Hu J, Zhang W, Wan L, Zhu L, Tang H, He G (2010) Revealing different systems responses to brown plant hopper infestation for pest susceptible and resistant rice plants with the combined metabolomic and gene-expression analysis. J Proteome Res 9:6774–6785

    Article  CAS  PubMed  Google Scholar 

  • Maserti BE, Carratore R, Della Croce CM, Podda A, Migheli Q, Froelicher Y, Luro F, Morillon R, Ollitrault P, Talon M, Rossignol M (2011) Comparative analysis of proteome changes induced by the two spotted spider mite Tetranychus urticae and methyl jasmonate in citrus leaves. J Plant Physiol 168:392–402

    Article  CAS  PubMed  Google Scholar 

  • McCafferty HRK, Moore PH, Zhu Y (2006) Improved Carica papaya tolerance to carmine spider mite by the expression of Manduca sexta chitinase transgene. Transgenic Res 15:337–347

    Article  CAS  PubMed  Google Scholar 

  • Miller HL, Neese PA, Ketring DL, Dillwith JW (1994) Involvement of ethylene in aphid infestation of barley. J Plant Growth Regul 13:167–171

    Article  CAS  Google Scholar 

  • Mozos-Pascual M (1997) Plagas de los productos almacenados. Bol SEA 20:93–119

    Google Scholar 

  • Ninkovic V, Ahman I (2009) Aphid acceptance of Hordeum genotypes is affected by volatile exposure and is correlated with aphid growth. Euphytica 169:177–185

    Article  CAS  Google Scholar 

  • Park SJ, Huang Y, Ayoubi P (2006) Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta 223:932–947

    Article  CAS  PubMed  Google Scholar 

  • Petterson J, Quiroz A, Fahad AE (1996) Aphid antixenosis mediated by volatiles in cereals. Acta Agric Scand Sect B Soil Plant Sci 46:135–140

    Google Scholar 

  • Piesik D, Panka D, Delaney KJ, Skoczeck A, Lamparski R, Weaver DK (2011) Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.) or fungal infection (Fusarium spp.). J Plant Physiol 168:878–886

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2000) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  Google Scholar 

  • Porter DR, Mornhinweg DW, Webster JA (1999) Insect resistance in barley germplasm. In: Clemet SL, Quinsenberry SS (eds) Global plant genetic resources for insect-resistant crops. CRC Press LLC, Boca Raton, FL, pp 51–61

    Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonisms. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Saheed SA, Botha CEJ, Liu L, Jonsson L (2007) Comparison of structural damage caused by Russian wheat aphid (Diuraphis noxia) and Bird cherry-oat aphid (Rhopalosiphum padi) in a susceptible barley cultivar Hordeum vulgare cv. Clipper. Physiol Plant 129:429–435

    Article  CAS  Google Scholar 

  • Saheed SA, Cierlik I, Larsson KAE, Delp G, Bradley G, Jonsson L, Botha CEJ (2009) Stronger induction of callose deposition in barley by Russian wheat aphid than bird cherry-oat aphid is not associated with differences in callose synthase or beta-1,3-glucanase transcript abundance. Physiol Plant 135:150–161

    Article  CAS  PubMed  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300

    Article  CAS  PubMed  Google Scholar 

  • Santamaria ME, Cambra I, Martinez M, Pozancos C, Gonzalez-Melendi P, Gbric V, Castañera P, Ortego F, Diaz I (2012) Gene pyramiding of peptidase inhibitors enhances plant resistance to the spider mite Tetranychus urticae. PLoS One 7:e43011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shin S, Mackintosh CA, Lewis J, Heinen SJ, Radmer L, Dill-Macky R, Baldridge GD, Zeyen RJ, Muehlbauer GJ (2008) Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. J Exp Bot 59:2371–2378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shufran KA (2011) Host race evolution in Schizaphis graminum (Hemiptera: Aphididae): nuclear DNA sequences. Environ Entomol 40:1317–1322

    Article  PubMed  Google Scholar 

  • Smith CM, Boyko EV (2007) The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol Exp Appl 122:1–16

    Article  CAS  Google Scholar 

  • Smith CM, Liu X, Wang LJ, Liu X, Chen M-S, Starkey S, Bai J (2010) Aphid feeding activates expression of a transcriptome of oxylipin-based defense signals in wheat involved in resistance to herbivory. J Chem Ecol 36:260–276

    Article  CAS  PubMed  Google Scholar 

  • Soria-Guerra RE, Rosales-Mendoza S, Chang S, Haudenshield JS, Padmanaban A, Rodriguez-Zas S, Hartman GL, Ghabrial SA, Korban SS (2010) Transcriptome analysis of resistant and susceptible genotypes of Glycine tomentella during Phakopsora pachyrhizi infection reveals novel rust resistance genes. Theor Appl Genet 120:1315–1333

    Article  CAS  PubMed  Google Scholar 

  • Webster JA, Baker CA, Porter DR (1991) Detection and mechanism of Russian wheat aphid (Homoptera: Aphididae) resistance in barley. J Econ Entomol 84:669–673

    Google Scholar 

  • Weng Y, Perumal A, Burd JD, Rudd JC (2010) Biotypic diversity in greenbug (Hemiptera: Aphididae): microsatellite-based regional divergence and host-adapted differentiation. J Econ Entomol 103:1454–1463

    Article  PubMed  Google Scholar 

  • Zhou G, Wang X, Yan F, Wang X, Li R, Cheng J, Lou Y (2011) Genome-wide transcriptional changes and defence-related chemical profiling of rice in responses to infestation by the rice striped stem borer Chilo suppressalis. Physiol Plant 143:21–40

    Article  CAS  PubMed  Google Scholar 

  • Zhu-Salzman K, Salzman RA, Ahn JE, Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol 134:420–431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Financial supports from the Ministerio de Economía y Competitividad de España (project AGL2011-23650) and Subprograma Juan de la Cierva 2012 (to M.E.S.) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diaz, I., Cambra, I., Santamaría, M.E., González-Melendi, P., Martínez, M. (2014). Responses to Phytophagous Arthropods. In: Kumlehn, J., Stein, N. (eds) Biotechnological Approaches to Barley Improvement. Biotechnology in Agriculture and Forestry, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44406-1_12

Download citation

Publish with us

Policies and ethics