Skip to main content

Host and Nonhost Response to Attack by Fungal Pathogens

  • Chapter
  • First Online:
  • 1603 Accesses

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 69))

Abstract

Barley is attacked by a number of serious fungal pathogens that constantly challenge not only yield quantity but also grain quality. Some of these organisms are members of phylogenetic clades infecting also other cereals; others are unique to barley at least in terms of causing agronomically relevant disease. As a consequence barley breeders find themselves in a constant battle to enhance durable resistance or to introduce new resistance genes from donors belonging to the first or second gene pool. However, to be successful in this respect will require a good understanding of genomic loci, genes and pathways involved in durable and ideally race-nonspecific resistance of the crop. This review provides a summary of current knowledge of barley interacting with seven major fungal pathogens and might thus be useful for molecular plant pathologists and breeders with respect to potentially attractive approaches in knowledge-based pre-breeding for broadly acting and durable resistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Able AJ (2003) Role of reactive oxygen species in the response of barley to necrotrophic pathogens. Protoplasma 221:137–143

    CAS  PubMed  Google Scholar 

  • Aghnoum R, Niks RE (2010) Specificity and levels of nonhost resistance to nonadapted Blumeria graminis forms in barley. New Phytol 185:275–284

    PubMed  Google Scholar 

  • An QL, Huckelhoven R, Kogel KH, Van Bel AJE (2006) Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol 8:1009–1019

    CAS  PubMed  Google Scholar 

  • Atienza SG, Jafary H, Niks RE (2004) Accumulation of genes for susceptibility to rust fungi for which barley is nearly a nonhost results in two barley lines with extreme multiple susceptibility. Planta 220:71–79

    CAS  PubMed  Google Scholar 

  • Avrova A, Knogge W (2012) Rhynchosporium commune: a persistent threat to barley cultivation. Mol Plant Pathol 13:986–997

    CAS  PubMed  Google Scholar 

  • Bai GH, Shaner G (2004) Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 42:135–161

    CAS  PubMed  Google Scholar 

  • Babaeizad V, Imani J, Kogel KH, Eichmann R, Hückelhoven R (2009) Over-expression of the cell death regulator BAX inhibitor-1 in barley confers reduced or enhanced susceptibility to distinct fungal pathogens. Theor Appl Genet 118:455–463

    CAS  PubMed  Google Scholar 

  • Beccari G, Covarelli L, Nicholson P (2011) Infection processes and soft wheat response to root rot and crown rot caused by Fusarium culmorum. Plant Pathol 60:671–684

    CAS  Google Scholar 

  • Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci U S A 102:3135–3140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boddu J, Cho S, Kruger WM, Muehlbauer GJ (2006) Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol Plant Microbe Interact 19:407–417

    CAS  PubMed  Google Scholar 

  • Boddu J, Cho SH, Muehlbauer GJ (2007) Transcriptome analysis of trichothecene-induced gene expression in barley. Mol Plant Microbe Interact 20:1364–1375

    CAS  PubMed  Google Scholar 

  • Bogacki P, Oldach KH, Williams KJ (2008) Expression profiling and mapping of defence response genes associated with the barley-Pyrenophora teres incompatible interaction. Mol Plant Pathol 9:645–660

    CAS  PubMed  Google Scholar 

  • Bollina V, Kushalappa AC, Choo TM, Dion Y, Rioux S (2011) Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry. Plant Mol Biol 77:355–370

    CAS  PubMed  Google Scholar 

  • Brown JKM, Simpson CG, Wolfe MS (1993) Adaptation of barley powdery mildew populations in England to varieties with 2 resistance genes. Plant Pathol 42:108–115

    Google Scholar 

  • Brown NA, Urban M, Van De Meene AML, Hammond-Kosack KE (2010) The infection biology of Fusarium graminearum: defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biol 114:555–571

    PubMed  Google Scholar 

  • Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci U S A 99:9328–9333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brueggeman R, Druka A, Nirmala J, Cavileer T, Drader T, Rostoks N, Mirlohi A, Bennypaul H, Gill U, Kudrna D, Whitelaw C, Kilian A, Han F, Sunl Y, Gill K, Steffenson B, Kleinhofs A (2008) The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci U S A 105:14970–14975

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16:2514–2528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caldo RA, Nettleton D, Peng JQ, Wise RP (2006) Stage-specific suppression of basal defense discriminates barley plants containing fast- and delayed-acting Mla powdery mildew resistance alleles. Mol Plant Microbe Interact 19:939–947

    CAS  PubMed  Google Scholar 

  • Cao AH, Xing LP, Wang XY, Yang XM, Wang W, Sun YL, Qian C, Ni JL, Chen YP, Liu DJ, Wang X, Chen PD (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci U S A 108:7727–7732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB (2010a) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen XW, Niks RE, Hedley PE, Morris J, Druka A, Marcel TC, Vels A, Waugh R (2010b) Differential gene expression in nearly isogenic lines with QTL for partial resistance to Puccinia hordei in barley. BMC Genomics 11:629

    PubMed Central  PubMed  Google Scholar 

  • Choo TM, Martin RA, Ho KM, Shen Q, Fedak G, Savard M, Voldeng H, Falk DE, Etienne M, Sparry E (2004) Fusarium head blight and deoxynivalenol accumulation of barley in eastern canada: cultivar response and correlation analysis. Plant Dis 88:837–844

    CAS  Google Scholar 

  • Colebrook EH, Creissen G, McGrann GRD, Dreos R, Lamb C, Boyd LA (2012) Broad-spectrum acquired resistance in barley induced by the Pseudomonas pathosystem shares transcriptional components with Arabidopsis systemic acquired resistance. Mol Plant Microbe Interact 25:658–667

    CAS  PubMed  Google Scholar 

  • Collinge DB (2009) Cell wall appositions: the first line of defence. J Exp Bot 60:351–352

    CAS  PubMed  Google Scholar 

  • Collinge DB, Jorgensen HJL, Lund OS, Lyngkjaer MF (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Phytopathol 48:269–291

    CAS  PubMed  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    CAS  PubMed  Google Scholar 

  • Comadran J, Ramsay L, MacKenzie K, Hayes P, Close TJ, Muehlbauer G, Stein N, Waugh R (2011) Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theor Appl Genet 122:523–531

    PubMed Central  PubMed  Google Scholar 

  • Douchkov D, Nowara D, Zierold U, Schweizer P (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol Plant Microbe Interact 18:755–761

    CAS  PubMed  Google Scholar 

  • Douchkov D, Johrde A, Nowara D, Himmelbach A, Lueck S, Niks R, Schweizer P (2011) Convergent evidence for a role of WIR1 proteins during the interaction of barley with the powdery mildew fungus Blumeria graminis. J Plant Physiol 168:20–29

    CAS  PubMed  Google Scholar 

  • Eichmann R, Schultheiss H, Kogel KH, Huckelhoven R (2004) The barley apoptosis suppressor homologue bax inhibitor-1 compromises nonhost penetration resistance of barley to the inappropriate pathogen Blumeria graminis f. sp tritici. Mol Plant Microbe Interact 17:484–490

    CAS  PubMed  Google Scholar 

  • Eichmann R, Bischof M, Weis C, Shaw J, Lacomme C, Schweizer P, Duchkov D, Hensel G, Kumlehn J, Huckelhoven R (2010) BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew. Mol Plant Microbe Interact 23:1217–1227

    CAS  PubMed  Google Scholar 

  • Elliott C, Zhou FS, Spielmeyer W, Panstruga R, Schulze-Lefert P (2002) Functional conservation of wheat and rice Mlo orthologs in defense modulation to the powdery mildew fungus. Mol Plant Microbe Interact 15:1069–1077

    CAS  PubMed  Google Scholar 

  • Felle HH, Herrmann A, Schaefer P, Hueckelhoven R, Kogel KH (2008) Interactive signal transfer between host and pathogen during successful infection of barley leaves by Blumeria graminis and Bipolaris sorokiniana. J Plant Physiol 165:52–59

    CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    CAS  PubMed  Google Scholar 

  • Gonzalez AM, Marcel TC, Kohutova Z, Stam P, van der Linden CG, Niks RE (2010) Peroxidase profiling reveals genetic linkage between Peroxidase gene clusters and basal host and non-host resistance to rusts and mildew in barley. PLoS One 5:e10495

    PubMed Central  PubMed  Google Scholar 

  • Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525

    CAS  PubMed  Google Scholar 

  • Gregersen PL, Thordal-Christensen H, Forster H, Collinge DB (1997) Differential gene transcript accumulation in barley leaf epidermis and mesophyll in response to attack by Blumeria graminis f.sp. hordei (syn. Erysiphe graminis f.sp. hordei). Physiol Mol Plant Pathol 51:85–97

    CAS  Google Scholar 

  • Hahn M, Juengling S, Knogge W (1993) Cultivar-specific elicitation of barley defense reactions by the phytotoxic peptide NIP1 from Rhynchosporium secalis. Mol Plant Microbe Interact 6:745–754

    CAS  PubMed  Google Scholar 

  • Hallen-Adams HE, Wenner N, Kuldau GA, Trail F (2011) Deoxynivalenol biosynthesis-related gene expression during wheat kernel colonization by Fusarium graminearum. Phytopathology 101:1091–1096

    CAS  PubMed  Google Scholar 

  • Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2008) Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J Plant Physiol 165:71–82

    CAS  PubMed  Google Scholar 

  • Hoefle C, Huesmann C, Schultheiss H, Bornke F, Hensel G, Kumlehn J, Huckelhoven R (2011) A barley ROP GTPase ACTIVATING PROTEIN associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells. Plant Cell 23:2422–2439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horbach R, Navarro-Quesada AR, Knogge W, Deising HB (2011) When and how to kill a plant cell: infection strategies of plant pathogenic fungi. J Plant Physiol 168:51–62

    CAS  PubMed  Google Scholar 

  • Huang K, Czymmek KJ, Caplan JL, Sweigard JA, Donofrio NM (2011) HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLoS Pathog 7:e1001335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huckelhoven R (2007) Cell wall – associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127

    PubMed  Google Scholar 

  • Huckelhoven R, Kogel KH (1998) Tissue-specific superoxide generation at interaction sites in resistant and susceptible near-isogenic barley lines attacked by the powdery mildew fungus (Erysiphe graminis f. sp. hordei). Mol Plant Microbe Interact 11:292–300

    CAS  Google Scholar 

  • Huckelhoven R, Panstruga R (2011) Cell biology of the plant-powdery mildew interaction. Curr Opin Plant Biol 14:738–746

    PubMed  Google Scholar 

  • Huckelhoven R, Fodor J, Preis C, Kogel KH (1999) Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol 119:1251–1260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huckelhoven R, Dechert C, Kogel KH (2003) Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis. Proc Natl Acad Sci U S A 100:5555–5560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huesmann C, Reiner T, Hoefle C, Preuss J, Jurca ME, Domoki M, Feher A, Huckelhoven R (2012) Barley ROP binding kinase1 is involved in microtubule organization and in basal penetration resistance to the barley powdery mildew fungus. Plant Physiol 159:311–320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jafary H, Szabo LJ, Niks RE (2006) Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Mol Plant Microbe Interact 19:1270–1279

    CAS  PubMed  Google Scholar 

  • Jafary H, Albertazzi G, Marcel TC, Niks RE (2008) High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178:2327–2339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jansen C, von Wettstein D, Schafer W, Kogel KH, Felk A, Maier FJ (2005) Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc Natl Acad Sci U S A 102:16892–16897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jarosch B, Kogel KH, Schaffrath U (1999) The ambivalence of the barley Mlo locus: mutations conferring resistance against powdery mildew (Blumeria graminis f. sp, hordei) enhance susceptibility to the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 12:508–514

    CAS  Google Scholar 

  • Jarosch B, Collins NC, Zellerhoff N, Schaffrath U (2005) RAR1, ROR1, and the actin cytoskeleton contribute to basal resistance to Magnaporthe grisea in barley. Mol Plant Microbe Interact 18:397–404

    CAS  PubMed  Google Scholar 

  • Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF, Collinge DB (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol 65:137–150

    CAS  PubMed  Google Scholar 

  • Johrde A, Schweizer P (2008) A class III peroxidase specifically expressed in pathogen-attacked barley epidermis contributes to basal resistance. Mol Plant Pathol 9:687–696

    CAS  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  PubMed  Google Scholar 

  • Jorgensen JH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–152

    Google Scholar 

  • Jorgensen JH (1994) Genetics of powdery mildew resistance in barley. Crit Rev Plant Sci 13:97–119

    Google Scholar 

  • Jorgensen HJL, Lubeck PS, Thordal-Christensen H, de Neergaard E, Smedegaard-Petersen V (1998) Mechanisms of induced resistance in barley against Drechslera teres. Phytopathology 88:698–707

    Google Scholar 

  • Kale SD, Gu BA, Capelluto DGS, Dou DL, Feldman E, Rumore A, Arredondo FD, Hanlon R, Fudal I, Rouxel T, Lawrence CB, Shan WX, Tyler BM (2010) External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142:284–295

    CAS  PubMed  Google Scholar 

  • Kazan K, Gardiner DM, Manners JM (2012) On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol Plant Pathol 13:399–413

    CAS  PubMed  Google Scholar 

  • Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park SY, Czymmek K, Kang S, Valent B (2010) Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22:1388–1403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi I, Kobayashi Y, Yamaoka N, Kunoh H (1992) Recognition of a pathogen and a nonpathogen by barley coleoptile cells. III. Responses of microtubules and actin-filaments in barley coleoptile cells to penetration attempts. Can J Bot 70:1815–1823

    Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    CAS  PubMed  Google Scholar 

  • Kumar J, Huckelhoven R, Beckhove U, Nagarajan S, Kogel KH (2001) A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (Teleomorph: Cochliobolus sativus) and its toxins. Phytopathology 91:127–133

    CAS  PubMed  Google Scholar 

  • Kumar J, Schafer P, Huckelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan S, Kogel KH (2002) Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol Plant Pathol 3:185–195

    CAS  PubMed  Google Scholar 

  • Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S (2012) Differential metabolic response of barley genotypes, varying in resistance, to trichothecene-producing and nonproducing (tri5-) isolates of Fusariam graminearum. Plant Pathol 61:509–521

    CAS  Google Scholar 

  • Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, El Kasmi F, Jurgens G, Parker J, Panstruga R, Lipka V, Schulze-Lefert P (2008) Co-option of a default secretory pathway for plant immune responses. Nature 451:835–840

    CAS  PubMed  Google Scholar 

  • Lauge R, Joosten MH, Haanstra JP, Goodwin PH, Lindhout P, De Wit PJ (1998) Successful search for a resistance gene in tomato targeted against a virulence factor of a fungal pathogen. Proc Natl Acad Sci U S A 95:9014–9018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leisova-Svobodova L, Hanzalova A, Kucera L (2010) Expansion and variability of the Ptr Tox A gene in populations of Pyrenophora tritici-repentis and Pyrenophora teres. J Plant Pathol 92:729–735

    CAS  Google Scholar 

  • Lim LG, Gaunt RE (1986) The effect of powdery mildew (Erysiphe-Graminis F-Sp Hordei) and leaf rust (Puccinia-Hordei) on spring barley in New-Zealand. I. Epidemic development, green leaf-area and yield. Plant Pathol 35:44–53

    Google Scholar 

  • Linsell KJ, Keiper FJ, Forgan A, Oldach KH (2011) New insights into the infection process of Rhynchosporium secalis in barley using GFP. Fungal Genet Biol 48:124–131

    CAS  PubMed  Google Scholar 

  • Liu ZH, Ellwood SR, Oliver RP, Friesen TL (2011) Pyrenophora teres: profile of an increasingly damaging barley pathogen. Mol Plant Pathol 12:1–19

    PubMed  Google Scholar 

  • Manning VA, Hardison LK, Ciuffetti LM (2007) Ptr ToxA interacts with a chloroplast-localized protein. Mol Plant Microbe Interact 20:168–177

    CAS  PubMed  Google Scholar 

  • Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500

    CAS  PubMed  Google Scholar 

  • Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and near-isogenic lines. New Phytol 177:743–755

    PubMed  Google Scholar 

  • McDonald BA, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163–180

    CAS  Google Scholar 

  • Meng Y, Wise RP (2012) HvWRKY10, HvWRKY19, and HvWRKY28 regulate Mla-triggered immunity and basal defense to barley powdery mildew. Mol Plant Microbe Interact 25:1492–1505

    CAS  PubMed  Google Scholar 

  • Miethbauer S, Heiser I, Liebermann B (2003) The phytopathogenic fungus Ramularia collo-cygni produces biologically active rubellins on infected barley leaves. J Phytopathol 151:665–668

    CAS  Google Scholar 

  • Miklis M, Consonni C, Bhat RA, Lipka V, Schulze-Lefert P, Panstruga R (2007) Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol 144:1132–1143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Millett BP, Xiong YW, Dahl SK, Steffenson BJ, Muehlbauer GJ (2009) Wild barley accumulates distinct sets of transcripts in response to pathogens of different trophic lifestyles. Physiol Mol Plant Pathol 74:91–98

    CAS  Google Scholar 

  • Moscou MJ, Lauter N, Caldo RA, Nettleton D, Wise RP (2011a) Quantitative and temporal definition of the Mla transcriptional regulon during barley-powdery mildew interactions. Mol Plant Microbe Interact 24:694–705

    CAS  PubMed  Google Scholar 

  • Moscou MJ, Lauter N, Steffenson B, Wise RP (2011b) Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons. PLoS Genet 7:e1002208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neu C, Keller B, Feuillet C (2003) Cytological and molecular analysis of the Hordeum vulgare- Puccinia triticina nonhost interaction. Mol Plant Microbe Interact 16:626–633

    CAS  PubMed  Google Scholar 

  • Niks RE (1983a) Comparative histology of partial resistance and the non-host reaction to leaf rust pathogens in barley and wheat seedlings. Phytopathology 73:60–64

    Google Scholar 

  • Niks RE (1983b) Haustorium formation by Puccinia-Hordei in leaves of hypersensitive, partially resistant, and non-host plant genotypes. Phytopathology 73:64–66

    Google Scholar 

  • Niks RE, Rubiales D (2002) Potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica 124:201–216

    CAS  Google Scholar 

  • Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oliveira P, Mauch A, Jacob F, Arendt EK (2012) Impact of Fusarium culmorum-infected barley malt grains on brewing and beer quality. J Am Soc Brew Chem 70:186–194

    CAS  Google Scholar 

  • Papadopoulou-Bouraoui A, Vrabcheva T, Valzacchi S, Stroka J, Anklam E (2004) Screening survey of deoxynivalenol in beer from the European market by an enzyme-linked immunosorbent assay. Food Addit Contam 21:607–617

    CAS  PubMed  Google Scholar 

  • Parker D, Beckmann M, Zubair H, Enot DP, Caracuel-Rios Z, Overy DP, Snowdon S, Talbot NJ, Draper J (2009) Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. Plant J 59:723–737

    CAS  PubMed  Google Scholar 

  • Pathuri IP, Zellerhoff N, Schaffrath U, Hensel G, Kumlehn J, Kogel KH, Eichmann R, Huckelhoven R (2008) Constitutively activated barley ROPs modulate epidermal cell size, defense reactions and interactions with fungal leaf pathogens. Plant Cell Rep 27:1877–1887

    CAS  PubMed  Google Scholar 

  • Persson M, Falk A, Dixelius C (2009) Studies on the mechanism of resistance to Bipolaris sorokiniana in the barley lesion mimic mutant bst1. Mol Plant Pathol 10:587–598

    CAS  PubMed  Google Scholar 

  • Pestka JJ (2007) Deoxynivalenol: toxicity, mechanisms and animal health risks. Anim Feed Sci Technol 137:283–298

    CAS  Google Scholar 

  • Petti C, Reiber K, Ali SS, Berney M, Doohan FM (2012) Auxin as a player in the biocontrol of Fusarium head blight disease of barley and its potential as a disease control agent. BMC Plant Biol 12:224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piffanelli P, Zhou FS, Casais C, Orme J, Jarosch B, Schaffrath U, Collins NC, Panstruga R, Schulze-Lefert P (2002) The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol 129:1076–1085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Placinta CM, D’Mello JPF, Macdonald AMC (1999) A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim Feed Sci Technol 78:21–37

    CAS  Google Scholar 

  • Proels RK, Oberhollenzer K, Pathuri IP, Hensel G, Kumlehn J, Huckelhoven R (2010) RBOHF2 of barley is required for normal development of penetration resistance to the parasitic fungus Blumeria graminis f. sp hordei. Mol Plant Microbe Interact 23:1143–1150

    CAS  PubMed  Google Scholar 

  • Rayapuram C, Jensen MK, Maiser F, Shanir JV, Hornshoj H, Rung JH, Gregersen PL, Schweizer P, Collinge DB, Lyngkjaer MF (2012) Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. Mol Plant Pathol 13:135–147

    CAS  PubMed  Google Scholar 

  • Rohe M, Gierlich A, Hermann H, Hahn M, Schmidt B, Rosahl S, Knogge W (1995) The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrs1 resistance genotype. EMBO J 14:4168–4177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruge-Wehling B, Linz A, Habekuss A, Wehling P (2006) Mapping of Rym16(Hb), the second soil-borne virus-resistance gene introgressed from Hordeum bulbosum. Theor Appl Genet 113:867–873

    CAS  PubMed  Google Scholar 

  • Schmidt SM, Panstruga R (2007) Cytoskeleton functions in plant-microbe interactions. Physiol Mol Plant Pathol 71:135–148

    CAS  Google Scholar 

  • Schultheiss H, Dechert C, Kogel KH, Huckelhoven R (2003) Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. Plant J 36:589–601

    CAS  PubMed  Google Scholar 

  • Schultheiss H, Hensel G, Imani J, Broeders S, Sonnewald U, Kogel KH, Kumlehn J, Huckelhoven R (2005) Ectopic expression of constitutively activated RACB in barley enhances susceptibility to powdery mildew and abiotic stress. Plant Physiol 139:353–362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schultheiss H, Preuss J, Pircher T, Eichmann R, Huckelhoven R (2008) Barley RIC171 interacts with RACB in planta and supports entry of the powdery mildew fungus. Cell Microbiol 10:1815–1826

    CAS  PubMed  Google Scholar 

  • Schulze-Lefert P, Panstruga R (2011) A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci 16:117–125

    CAS  PubMed  Google Scholar 

  • Schwarz PB, Beattie S, Casper HH (1996) Relationship between Fusarium infestation of barley and the gushing potential of malt. J Inst Brew 102:93–96

    Google Scholar 

  • Schweizer P (2008) Tissue-specific expression of a defence-related peroxidase in transgenic wheat potentiates cell death in pathogen-attacked leaf epidermis. Mol Plant Pathol 9:45–57

    CAS  PubMed  Google Scholar 

  • Schweizer P, Stein N (2011) Large-scale data integration reveals colocalization of gene functional groups with meta-QTL for multiple disease resistance in barley. Mol Plant Microbe Interact 24:1492–1501

    CAS  PubMed  Google Scholar 

  • Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315:1098–1103

    CAS  PubMed  Google Scholar 

  • Skadsen RW, Hohn TA (2004) Use of Fusarium graminearum transformed with gfp to follow infection patterns in barley and Arabidopsis. Physiol Mol Plant Pathol 64:45–53

    CAS  Google Scholar 

  • Spies A, Korzun L, Bayles R, Rajaraman J, Himmelbach A, Hedley PE, Schweizer P (2012) Allele mining in barley genetic resources reveals genes of race-nonspecific powdery mildew resistance. Front Plant Sci 2:113

    PubMed Central  PubMed  Google Scholar 

  • Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M, Graner A, Wobus U (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapPlan/PageMan profiling tools. Plant Physiol 146:1738–1758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stabentheiner E, Minihofer T, Huss H (2009) Infection of barley by Ramularia collo-cygni: scanning electron microscopic investigations. Mycopathologia 168:135–143

    PubMed  Google Scholar 

  • Steffenson BJ, Jin Y, Brueggeman RS, Kleinhofs A, Sun Y (2009) Resistance to stem rust race TTKSK Maps to the rpg4/Rpg5 complex of chromosome 5H of barley. Phytopathology 99:1135–1141

    CAS  PubMed  Google Scholar 

  • Steiner-Lange S, Fischer A, Boettcher A, Rouhara I, Liedgens H, Schmelzer E, Knogge W (2003) Differential defense reactions in leaf tissues of barley in response to infection by Rhynchosporium secalis and to treatment with a fungal avirulence gene product. Mol Plant Microbe Interact 16:893–902

    CAS  PubMed  Google Scholar 

  • Stergiopoulos I, van den Burg HA, Okmen B, Beenen HG, van Liere S, Kema GHJ, de Wit P (2010) Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proc Natl Acad Sci U S A 107:7610–7615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka S, Ichikawa A, Yamada K, Tsuji G, Nishiuchi T, Mori M, Koga H, Nishizawa Y, O’Connell R, Kubo Y (2010) HvCEBiP, a gene homologous to rice chitin receptor CEBiP, contributes to basal resistance of barley to Magnaporthe oryzae. BMC Plant Biol 10:288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thirugnanasambandam A, Wright KM, Havis N, Whisson SC, Newton AC (2011) Agrobacterium-mediated transformation of the barley pathogen Ramularia collo-cygni with fluorescent marker tags and live tissue imaging of infection development. Plant Pathol 60:929–937

    CAS  Google Scholar 

  • ThordalChristensen H, Zhang ZG, Wei YD, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    CAS  Google Scholar 

  • Thordal-Christensen H, Gregersen PL, Collinge DB (eds) (2000) The barley/Blumeria (syn. Erysiphe) graminis interaction: a case study. Kluwer, Dordrecht

    Google Scholar 

  • Tinoco MLP, Dias BBA, Dall’Astta RC, Pamphile JA, Aragao FJL (2010) In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8:27

    PubMed Central  PubMed  Google Scholar 

  • Trujillo M, Kogel KH, Huckelhoven R (2004) Superoxide and hydrogen peroxide play different roles in the nonhost interaction of barley and wheat with inappropriate formae speciales of Blumeria graminis. Mol Plant Microbe Interact 17:304–312

    CAS  PubMed  Google Scholar 

  • Urashima AS, Igarashi S, Kato H (1993) Host-range, mating-type, and fertility of Pyricularia-grisea from wheat in brazil. Plant Dis 77:1211–1216

    Google Scholar 

  • van der Vossen E, Sikkema A, Hekkert BTL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882

    PubMed  Google Scholar 

  • van der Vossen EAG, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44:208–222

    PubMed  Google Scholar 

  • Wagacha JM, Muthomi JW (2007) Fusarium culmorum: infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Protect 26:877–885

    CAS  Google Scholar 

  • Wagner C, Schweizer G, Kramer M, Dehmer-Badani A, Ordon F, Friedt W (2008) The complex quantitative barley-Rhynchosporium secalis interaction: newly identified QTL may represent already known resistance genes. Theor Appl Genet 118:113–122

    CAS  PubMed  Google Scholar 

  • Walters DR, Havis ND, Oxley SJP (2008) Ramularia collo-cygni: the biology of an emerging pathogen of barley. FEMS Microbiol Lett 279:1–7

    CAS  PubMed  Google Scholar 

  • Wang CF, Huang LL, Zhang HC, Han QM, Buchenauer H, Kang ZS (2010) Cytochemical localization of reactive oxygen species (O-2(-) and H2O2) and peroxidase in the incompatible and compatible interaction of wheat – Puccinia striiformis f. sp tritici. Physiol Mol Plant Pathol 74:221–229

    CAS  Google Scholar 

  • Ward R (2007) The global threat posed by Ug99. Phytopathology 97:S136

    Google Scholar 

  • Weerasena JS, Steffenson BJ, Falk AB (2004) Conversion of an amplified fragment length polymorphism marker into a co-dominant marker in the mapping of the Rph15 gene conferring resistance to barley leaf rust, Puccinia hordei Otth. Theor Appl Genet 108:712–719

    CAS  PubMed  Google Scholar 

  • Wevelsiep L, Kogel KH, Knogge W (1991) Purification and characterization of peptides from Rhynchosporium-secalis inducing necrosis in barley. Physiol Mol Plant Pathol 39:471–482

    CAS  Google Scholar 

  • Wevelsiep L, Rupping E, Knogge W (1993) Stimulation of barley plasmalemma H+-ATPase by phytotoxic peptides from the fungal pathogen Rhynchosporium-secalis. Plant Physiol 101:297–301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wise RP, Lauter N, Szabo LJ, Schweizer P (2009) Genomics of biotic interactions in the Triticeae. In: Muehlbauer GJ, Feuillet C (eds) Genetics and genomics of the Triticeae, vol 7. Springer, New York, NY, pp 559–589

    Google Scholar 

  • Yang F, Jensen JD, Svensson B, Jorgensen HJL, Collinge DB, Finnie C (2010) Analysis of early events in the interaction between Fusariam graminearum and susceptible barley (Hordeum vulgare) cultivar Scarlett. Proteomics 10:3748–3755

    CAS  PubMed  Google Scholar 

  • Yang F, Jensen JD, Svensson B, Jorgensen HJL, Collinge DB, Finnie C (2012) Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat. Mol Plant Pathol 13:445–453

    CAS  PubMed  Google Scholar 

  • Yin CT, Jurgenson JE, Hulbert SH (2011) Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp tritici. Mol Plant Microbe Interact 24:554–561

    CAS  PubMed  Google Scholar 

  • Zellerhoff N, Jarosch B, Groenewald JZ, Crous PW, Schaffrath U (2006) Nonhost resistance of barley is successfully manifested against Magnaporthe grisea and a closely related Pennisetum-infecting lineage but is overcome by Magnaporthe oryzae. Mol Plant Microbe Interact 19:1014–1022

    CAS  PubMed  Google Scholar 

  • Zellerhoff N, Jansen M, Schaffrath U (2008) Barley Rom1 antagonizes Rar1 function in Magnaporthe oryzae-infected leaves by enhancing epidermal and diminishing mesophyll defence. New Phytol 180:702–710

    CAS  PubMed  Google Scholar 

  • Zellerhoff N, Himmelbach A, Dong WB, Bieri S, Schaffrath U, Schweizer P (2010) Nonhost resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses. Plant Physiol 152:2053–2066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Lavery L, Gill U, Gill K, Steffenson B, Yan GP, Chen XM, Kleinhofs A (2009) A cation/proton-exchanging protein is a candidate for the barley NecS1 gene controlling necrosis and enhanced defense response to stem rust. Theor Appl Genet 118:385–397

    CAS  PubMed  Google Scholar 

  • Zhou FS, Kurth JC, Wei FS, Elliott C, Vale G, Yahiaoui N, Keller B, Somerville S, Wise R, Schulze-Lefert P (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell 13:337–350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zierold U, Scholz U, Schweizer P (2005) Transcriptome analysis of mlo-mediated resistance in the epidermis of barley. Mol Plant Pathol 6:139–151

    CAS  PubMed  Google Scholar 

  • Zimmermann G, Baumlein H, Mock HP, Himmelbach A, Schweizer P (2006) The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance. Plant Physiol 142:181–192

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge image materials for Fig. 11.1 from Dimitar Douchkov (IPK), Daniela Nowara (IPK), Ulrich Schaffrath (RWTH Aachen), Alan Schulman (Helsinki University) and Günter Schweizer (LfL, Freising). I would also like to thank Wolfgang Knogge (Leibniz IPB, Halle) for consent to show unpublished information about transcript profiling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Schweizer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schweizer, P. (2014). Host and Nonhost Response to Attack by Fungal Pathogens. In: Kumlehn, J., Stein, N. (eds) Biotechnological Approaches to Barley Improvement. Biotechnology in Agriculture and Forestry, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44406-1_11

Download citation

Publish with us

Policies and ethics