Advertisement

Lithography

  • Hans H. Gatzen
  • Volker Saile
  • Jürg Leuthold
Chapter

Abstract

The goal of the lithography process is to provide a technique for patterning the various thin-film materials used in MEMS and NEMS substrate fabrication. Most commonly used is mask-based lithography, applying UV light for “printing” a pattern in a photoresist. The mask creating the pattern consists of a transparent mask plate with an opaque pattern on one side. The challenge is how to achieve a minimal feature size, also called line width or in the semiconductor industry “node”. Contact and proximity exposure are near-field methods. Projection exposure is a far-field technique not only taking optimal advantage of optical theory; it may also use demagnification between the mask and its image on the substrate surface, projecting only a single device at a time and exposing the whole substrate surface successively in a “step-and-repeat” sequence. High-resolution alternatives to optical lithography for special applications are X-ray or electron-beam (e-beam) lithography or nonoptical methods like, for instance, dip-pen nanolithography transferring ink or nanoimprint lithography (NIL), mechanically creating a relief pattern.

Keywords

Soft Lithography Microcontact Printing Mask Aligner Negative Tone Projection Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Albertus M (2003) Science, optics, and you: pioneers in optics. http://micro.magnet.fsu.edu/optics/timeline/people/magnus.html. Accessed 28 May 2013
  2. 2.
    Discovery of Light Sensitive Materials (2013) Photographic chemistry web page. http://www.bgsu.edu/departments/chem/faculty/endres/projects/photo_history.htm. Accessed 18 May 2013
  3. 3.
    Leggat R (2002) Schulze, Johann Heinrich, in history of photography. http://www.mpritchard.com/photohistory/history/schulze.htm. Accessed 18 May 2013
  4. 4.
    Lundgren A (2013) Carl Wilhelm Scheele. Encycl Britannica. http://www.britannica.com/EBchecked/topic/527125/Carl-Wilhelm-Scheele. Accessed 18 May 2013
  5. 5.
    Editors Encycl Britannica (2013) Jean Senebier. Encycl Britannica. http://www.britannica.com/EBchecked/topic/534381/Jean-Senebier. Accessed 18 May 2013
  6. 6.
    Die Erfindung Gutenbergs – Weiterentwicklung (2013) (Gutenberg’s invention—further development) (2013) http://www.gutenberg.de/erfindu3.htm. Accessed 16 May 2013
  7. 7.
    Lithography (2013) Infoplease encyclopedia. http://www.infoplease.com/encyclopedia/entertainment/lithography-the-process.html. Accessed 16 May 2013
  8. 8.
    Davenport A (1991) The history of photography: an overview. Focal Press BostonGoogle Scholar
  9. 9.
  10. 10.
    Editors Encycl Britannica (2013) Louis-Jacques-Mande Daguerre. Encycl Britannica. http://www.britannica.com/EBchecked/topic/149699/Louis-Jacques-Mande-Daguerre. Accessed 18 May 2013
  11. 11.
    Alphonse Louis Poitevin (1819–1882) Technique Phototypie. http://www.phototypie.fr/wordpress/en/alphonse-poitevin/. Accessed 29 May 2013
  12. 12.
    Miller K (2012) Photography. intellectual ventures lab. http://intellectualventureslab.com/?p=6784. Accessed 29 May 2013
  13. 13.
    Liu M, Ji Z, Shang L (2010) Top-down fabrication of nanostructures. In: Chi L (ed) Nanotechnology, vol 8, nanostructured surfaces. Wiley, WeinheimGoogle Scholar
  14. 14.
    Willson CG (1994) Organic resist materials. In: Thompson LF, Willson GC, Bowden MJ (eds) Introduction to microlithography, 2nd edn. American Chem Soc, Washington, DCGoogle Scholar
  15. 15.
    Chemische Fabrik Kalle & Co. (2013) Wiesbaden. http://www.wiesbaden.de/microsite/stadtlexikon/a-z/Chemische_Fabrik_Kalle___Co..php. Accessed 29 May 2013
  16. 16.
    Photolithography techniques are used to make silicon devices (2013) Computer Hist Mus. http://www.computerhistory.org/semiconductor/timeline/1955-Photolithography.html. Accessed 18 May 2013
  17. 17.
    Levinson HJ (2010) Principles of lithography, 3rd edn. SPIE, Bellingham WAGoogle Scholar
  18. 18.
    Photolithography (2012) MicroChemicals, Ulm, GermanyGoogle Scholar
  19. 19.
    Substrate cleaning prior to lithography (2013) Cornell nanoscale science and technology facility. http://www.cnf.cornell.edu/cnf_process_photo_resists.html#cleaning. Accessed 22 May 2013
  20. 20.
    General cleaning procedures (2013) Marvell nanofabrication laboratory. http://nanolab.berkeley.edu/labmanual/chap2/2.01GeneralCleaningProcedures.pdf. Accessed 29 May 2013
  21. 21.
    Dammel R (1993) Diazonaphthoquinone-based resists. SPIE, Bellingham, WAGoogle Scholar
  22. 22.
    Thompson LF (1994) Resist processing. In: Thompson LF, Willson GC, Bowden MJ (eds) Introduction to microlithography, 2nd edn. American Chem Soc, Washington, DCGoogle Scholar
  23. 23.
    Büttgenbach S (1994) Mikromechanik, 2nd edn. Teubner textbooks of applied physics, B.G, Teubner, StuttgartGoogle Scholar
  24. 24.
    Bowden MJ (1994) The lithography process—the physics. In: Thompson LF, Willson GC, Bowden MJ (eds) Introduction to microlithography, 2nd edn. American Chem Soc, Washington, DCGoogle Scholar
  25. 25.
    Information provided by ASML, Veldhoven, The NetherlandsGoogle Scholar
  26. 26.
    Menz W, Mohr J, Paul O (2001) Microsystem technology. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  27. 27.
    Developing (2013) SüssMicrotec. http://www.suss.com/en/products-solutions/technologies/developing/.html. Accessed 27 May 2013
  28. 28.
    Coherence (2013) Department of Physics and Astronomy, UT Knoxville http://electron6.phys.utk.edu/optics421/modules/m5/Coherence.htm. Accessed 28 May 2013
  29. 29.
    Herivel J (2013) Christiaan Huygens. Encycl Britannica. http://www.britannica.com/EBchecked/topic/277775/Christiaan-Huygens. Accessed 15 May 2014
  30. 30.
    Editors Encycl Britannica (2013) Augustin-Jean Fresnel. Encycl Britannica. http://www.britannica.com/EBchecked/topic/219805/Augustin-Jean-Fresnel. Accessed 30 May 2013
  31. 31.
    Editors Encycl Britannica (2013) Joseph von Fraunhofer. Encycl Britannica. http://www.britannica.com/EBchecked/topic/217618/Joseph-von-Fraunhofer. Accessed 30 May 2013
  32. 32.
    Editors Encycl Britannica (2013) Ernst Abbe. Encycl Britannica. http://www.britannica.com/EBchecked/topic/527/Ernst-Abbe. Accessed 31 May 2013
  33. 33.
    Carl Zeiss (2012) Encycl Britannica Online. http://www.britannica.com/EBchecked/topic/656288/Carl-Zeiss. Accessed 31 May 2013
  34. 34.
    From the history of microscopy: Abbe’s diffraction trials (2005) Carl Zeiss Inc. http://www.zeiss.com/C125716F004E0776/0/D1B2BF1284180E37C125717C003EDF5A/$File/Innovation_15_18.pdf. Accessed 31 May 2013
  35. 35.
    Struik DJ (2013) Joseph, Baron Fourier. Encycl Britannica. http://www.britannica.com/EBchecked/topic/215097/Joseph-Baron-Fourier. Accessed 04 June 2013
  36. 36.
    Lord Rayleigh – Biographical (1967) Nobelprize.org. Nobel Media AB. http://www.nobelprize.org/nobel_prizes/physics/laureates/1904/strutt-bio.html. Accessed 2 January 2014
  37. 37.
    Advanced mask aligner lithography (Amalith) (2010) Suss MicroOptics, Neuchatel, Switzerland. http://de.slideshare.net/reinhard.voelkel/suss-microtec-advanced-mask-aligner-lithography-2010. Accessed 24 June 2013
  38. 38.
    Strategies for beam homogenizing (2013) Suss MicroOptics, Neuchatel, Switzerland. http://www.amstechnologies.com/fileadmin/amsmedia/downloads/2084_SMO_TechInfo_Sheet_10.pdf. Accessed 24 June 2013
  39. 39.
    Exposure (2013) Suss MicroTec Garching, Germany. http://www.suss.com/en/products- solutions/technologies/exposure.html. Accessed 24 June 2013
  40. 40.
    Infrared alignment (2013) Suss MicroTec Garching, Germany. http://www.suss.com/en/products-solutions/products/mask-aligner/options/infrared-alignment.html. Accessed 24 June 2013
  41. 41.
    Gamma automatic coat / develop cluster (2013) Suss MicroTec Garching, Germany. http://www.suss.com/fileadmin/user_upload/brochures/BR_Gamma_2012_V1.pdf. Accessed 27 May 2013
  42. 42.
    Mansuripur M, Liang R (2014) Projection lithography: MM Research articles. http://www.mmresearch.com/articles/article4. Accessed 24 April 2014
  43. 43.
    Mark ChA (2013) Semiconductor lithography (photolithography) - The basic process. http://www.lithoguru.com/scientist/lithobasics.html. Accessed 24 June 2013
  44. 44.
    Fuller GE (2008) Optical lithography. In: Doering R, Nishi Y (eds) Handbook of semiconductor manufacturing technology, 2nd edn. CPC Press, Boca Raton, FLGoogle Scholar
  45. 45.
    Information provided by Süss MicroTec, Garching, Germany (2013)Google Scholar
  46. 46.
    Mark ChA (2011) Milestones in optical lithography tool suppliers. http://www.lithoguru.com/scientist/lithohistory.html. Accessed 30 June 2013
  47. 47.
    Making MEMS, the chips that know which way is up (2010) ASML videoclip. http://www.youtube.com/watch?v=IIjX5WlD4fw. Accessed 30 May 2013
  48. 48.
    Application note (1997) Silicon Valley Group (SVG), acquired by ASML in 2001Google Scholar
  49. 49.
    Hisanaga M, Koumura T, Hattori TT (1993) Fabrication of 3-dimensionally shaped Si diaphragm dynamic focusing mirror. In: Proceedings of MEMS ‘93. doi: 10.1109/MEMSYS.1993.296946
  50. 50.
    Henke W, Hoppe W, Quenzer HJ, Staudt-Fischbach P, Wagner B (1994) Simulation and experimental study of gray-tone lithography for the fabrication of arbitrarily shaped surfaces. In: Proceedings of MEMS ‘94. doi: 10.1109/MEMSYS.1994.555624
  51. 51.
    Simonite T (2013) Intel best on fabs, again, MIT technology review, 21 Jan 2013. http://www.technologyreview.com/news/509316/intel-bets-on-fabs-again/ Accessed 30 June 2013
  52. 52.
    Moore GM (1965). Cramming more components onto integrated circuits. Electronics 8:4–7. http://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf. Accessed 2 July 2013
  53. 53.
    EUV: Questions and answers (2013) ASML, Veldhoven, Netherlands. http://www.asml.com/asml/show.do?ctx=41905&rid=41906. Accessed 3 January 2014
  54. 54.
    Levinson MD (1994) Extending the lifetime of optical lithography technologies by wavefront engineering. Jpn J Appl Phys 33:6765–6773CrossRefGoogle Scholar
  55. 55.
    Tritchkov A, Jeong S, Kenyon C (2005) Lithography enabling for the 65 nm node gate layer patterning with alternating PSM. Proc SPIE 5754:215–225CrossRefGoogle Scholar
  56. 56.
    Perlitz S, Buttgereit U, Scherübl T, Seidel D, Lee KM, Tavassoli M (2007) Novel solution for in-die phase control under scanner equivalent optical settings for 45-nm node and below. In: Proceedings SPIE 6607. doi: 10.1117/12.728948
  57. 57.
    Arnold B [2009] Shrinking possibilities. IEEE Spectrum. http://spectrum.ieee.org/semiconductors/design/shrinking-possibilities. Accessed 1 July 2013
  58. 58.
    Mack ChA (2008) Why there will never be an 8-nm semiconductor node. Sidebar to: Seeing double. IEEE Spectrum http://spectrum.ieee.org/semiconductors/design/seeing-double/doubsb. Accessed 29 June 2013
  59. 59.
    Cui Z (2008) Nanotechnology. Springer Science and Business Media, New York, NYGoogle Scholar
  60. 60.
    Wei Y, Back D (2007) 193 nm immersion lithography: Status and challenges. SPIE Newsroom. doi: 10.1117/2.1200703.0001 Google Scholar
  61. 61.
    Stix G (2005) Shrinking circuits with water. Sci Am 293:64–67. doi: 10.1038/scientificamerican0705-64 CrossRefGoogle Scholar
  62. 62.
    Immersion lithography technology (2013) Nikon. http://www.nikon.com/about/technology/rd/core/optics/immersion_e/index.htm. Accessed 30 June 2013
  63. 63.
    Mack ChA (2008) Seeing double. IEEE Spect 11:46–51. http://spectrum.ieee.org/semiconductors/design/seeing-double. Accessed 30 June 2013
  64. 64.
    All double-patterning variations lead to Rome (2008) IEEE Spectrum. http://spectrum.ieee.org/images/nov08/images/doub03.pdf. Accessed 30 June 2011
  65. 65.
    Zhang H, Du Y, Wong MDF, Topaloglu RO (2011) Self-aligned double patterning decomposition for overlay minimization and hot spot detection. In: Proceedings of DAC 2011, San Diego, California, USA. http://www.icims.csl.uiuc.edu/~hzhang27/file/DAC2011_hongbo.pdf. Accessed 30 June 2011
  66. 66.
    Kinoshita H, Wood O (2009) A historical perspective. In: Bakshi V (ed) EUV lithography. SPIE Bellingham, WA http://books.google.de/books?id=91XeKLC9MUEC&printsec=frontcover&hl=de#v=onepage&q&f=false. Accessed 30 June 2011
  67. 67.
    Bakshi V (2009) EUV source technology. In: Bakshi V (ed) EUV lithography. SPIE Bellingham, WAGoogle Scholar
  68. 68.
    Hudyma RM, Soufli R (2009) Projection systems for extreme ultraviolet lithography. In: Bakshi V (ed) EUV lithography. SPIE Bellingham, WAGoogle Scholar
  69. 69.
    Soufli R, Bajt S, Hudyma RM, Taylor JS (2009) Optics and multilayer coatings for EUVL systems. In: Bakshi V (ed) EUV lithography. SPIE Bellingham, WAGoogle Scholar
  70. 70.
    Cho HK, Ahn J (2009) EUV mask and mask metrology. In: Bakshi V (ed) EUV lithography. SPIE Bellingham, WAGoogle Scholar
  71. 71.
    Saile V (2009) Introduction: LIGA and its applications. In: Saile V, Wallrabe U, Tabata O, Korvink JG (eds) LIGA and its applications. Wiley VCH, Weinheim, GermanyGoogle Scholar
  72. 72.
    Spiller E, Eastman DE, Feder R, Grobman WD, Gudat W, Topalian J (1976) Application of synchrotron radiation to X-ray lithography. J Appl Phy 47:5450–5459. doi.org/ 10.1063/1.322577
  73. 73.
    Desta J, Goettert J (2009) X-ray masks for LIGA microfabrication. In: Saile V, Wallrabe U, Tabata O, Korvink JG (eds) LIGA and its applications. Wiley, Weinheim, GermanyGoogle Scholar
  74. 74.
    Elder FR, Gurewitsch AM, Langmuir RV, Pollock HC (1947) Radiation from electrons in a synchrotron. Phys Rev 71:829–830CrossRefGoogle Scholar
  75. 75.
    Achenbach S (2000) Optimierung der Prozessbedingungen zur Herstellung von Mikrostructuren durch ultratiefe Röntgenlithographie (UDXRL) (Optimization of process conditions for fabricating microstructures through ultra-deep x-ray lithography (UDXRL)). Ph.D. thesis, Karlsruhe UniversityGoogle Scholar
  76. 76.
    Campbell SA (2001) The science and engineering of microelectronic fabrication, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  77. 77.
    Rizvi SA, Pas S (2008) Photomask fabrication. In: Doering R, Nishi Y (eds) Handbook of semiconductor manufacturing technology, 2nd edn. CPC Press, Boca Raton, FLGoogle Scholar
  78. 78.
    Laser lithographyLaser lithography (2014) Heidelberg Instruments, Heidelberg, Germany. http://www.himt.de/en/technology/laserlithography.php. Accessed 29 January 2014
  79. 79.
    Optical components (2014) Heidelberg Instruments, Heidelberg, Germany. http://www.himt.de/en/technology/optical-components.php. Accessed 29 January 2014
  80. 80.
    Goeppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen (Elementary acts with two quantum jumps). Ann Phys 9:273–294CrossRefGoogle Scholar
  81. 81.
    Maria Goeppert Mayer – Biographical (1963) Nobelprize.org. Nobel Media AB. http://www.nobelprize.org/nobel_prizes/physics/laureates/1963/mayer-bio.html. Accessed 29 January 2014
  82. 82.
    Przhonska OV, Webster S, Padilha LA, Hu H, Kachkovski AD, Hagan DJ, Van Stryland EW (2010) Two-photon absorption in near-IR conjugated molecules: design strategy and structure–property relations. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology I. Springer, BerlinGoogle Scholar
  83. 83.
    Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22:132–134CrossRefGoogle Scholar
  84. 84.
    Steidl L, Jhaveri SJ, Ayothi R, Sha J, McMullen JD, Ng SYC, Zipfel WR, Zentel R, Ober ChK (2009) Non-ionic photo-acid generators for applications in two-photon lithography. J Mater Chem 19:505–513. doi: 10.1039/b816434g CrossRefGoogle Scholar
  85. 85.
    D Laser Lithography/Direct Laser Writing (2014) Nanoscribe, Eggenstein-Leopoldshafen, Germany. http://www.nanoscribe.de/en/technology/direct-laser-writing. Accessed 17 January 2014
  86. 86.
    Hill P (2003) Femtosecond pulses generate microstructures. Nanotechweb.org, http://nanotechweb.org/cws/article/indepth/16633. Accessed 30 January 2014
  87. 87.
    Serbin J, Egbert A, Ostendorf A, Chichkov BN, Houbertz R, Domann G, Schulz J, Cronauer C, Fröhlich L, Popall M (2003) Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics. Opt Lett 28:301–303CrossRefGoogle Scholar
  88. 88.
    Kuebler SM, Rumi M (2004) Nonlinear optics—applications: three-dimensional microfabrication. In: Guenther RD, Steel DG, Bayvel L (eds) Encycl of modern optics. Elsevier, OxfordGoogle Scholar
  89. 89.
    Yurgens A, Södervall U (2006) E-Beam Lithography. Lecture notes, Chalmers University of Technology, Göteborg, Sweden. http://fy.chalmers.se/~yurgens/FKA196/lectures/E-beam%20lithography.pdf. Accessed 30 January 2014
  90. 90.
    Bhushan B (ed) (2004) Handbook of nanotechnology. Springer, BerlinGoogle Scholar
  91. 91.
    Binnig G, Quate CF, Gerber Ch (1986) Atomic force microscope. Phys Rev Lett 56:930–933. doi:  10.1103/PhysRevLett.56.930
  92. 92.
    The Nobel Prize in Physics 1986 (2013) Nobelprize.org. Nobel Media AB. http://www.nobelprize.org/nobel_prizes/physics/laureates/1986/. Accessed 11 February 2014
  93. 93.
    Tseng AA (2011) Nanoscale scratching with single and dual sources using atomic force microscopes. In: Tseng AA (ed) Tip-Based nanofabrication: fundamentals and applications. Springer, New YorkGoogle Scholar
  94. 94.
    Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) Dip Pen Nanolithography. Science 283:661–663. doi: 10.1126/science.283.5402.661 Google Scholar
  95. 95.
    Kim Y, Lieber CM (1992) Machining oxide thin films with an atomic force microscope: pattern and object formation on the nanometer scale. Science 257:375–377CrossRefGoogle Scholar
  96. 96.
    AFM lithography—scratching (2014) MT-NDT. Moscow, Russia. http://www.ntmdt.com/spm-principles/view/afm-lithography-scratching. Accessed 11 February 2014
  97. 97.
    Tseng AA (2010) A comparison study of scratch and wear properties using atomic force microscopy. Appl Surf Sci 256:4246–4252CrossRefGoogle Scholar
  98. 98.
  99. 99.
    National geographic recognizes world-changing discoveries (2012) Northwestern University Newscenter. http://www.northwestern.edu/newscenter/stories/2012/03/national-geographic-discoveries.html. Accessed 12 February 2014
  100. 100.
    Huo F, Zheng Z, Zheng G, Giam LR, Zhang H, Mirkin CA (2008) Polymer pen lithography. Science 321:1658–1660. doi: 10.1126/science.1162193 CrossRefGoogle Scholar
  101. 101.
    Nanoimprint lithography (2014) Nanostructure Laboratory, Princeton University. http://www.princeton.edu/~chouweb/newproject/page3.html. Accessed 12 February 2014
  102. 102.
    Chou SY, Krauss PR, Renstrom PJ (1996) Imprint lithography with 25-nanometer resolution. Science 272:85–87. doi: 10.1126/science.272.5258.85 CrossRefGoogle Scholar
  103. 103.
    Vogler M (2014) Advanced materials for nanoimprint lithography. Company presentation, micro resist technology. Berlin, GermanyGoogle Scholar
  104. 104.
    Fused Silica NIL Stamps (2014) NIL technology. Lyngby, Denmark. http://www.nilt.com/default.asp?Action=Details&Item=501. Accesed 20 February 2014
  105. 105.
    Whitesides GM (2014) Whitesides Research Group, Harvard University. http://gmwgroup.harvard.edu/content.php?page=gwhitesides. Accessed 12 February 2014
  106. 106.
    Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184. doi: 10.1146/annurev.matsci.28.1.153 CrossRefGoogle Scholar
  107. 107.
    Goldstein SC (2004) Nanoscale lithography. Lecture notes, Carnegie Mellon University. http://www.cs.cmu.edu/afs/cs/academic/class/15398-f05/www/lectures/4-nanolith.pdf. Accessed 4 January 2014
  108. 108.
    Prashar D (2012) Self-assembled monolayers – a review (2012) Int J Tech Res 4:258–265Google Scholar
  109. 109.
    Delamarche E, Michel B, Biebuyck HA, Gerber C (1996) Golden interfaces: The surface of self-assembled monolayers. Adv Mater 8:719–729. doi: 10.1002/adma.1996008090 CrossRefGoogle Scholar
  110. 110.
    Soft lithography techniques (2014) Whitesides Research Group, Harvard University. http://gmwgroup.harvard.edu/research/index.php?page=22. Accessed 2 February 2014
  111. 111.
    Lipomi DJ, Martinez RV, Cademartiri L, Whitesides GM (2012) Soft lithographic approaches to nanofabrication. In: Möller M, Matyjaszewski K (eds) Polymer science: a comprehensive reference, vol 7, Elsevier. doi: 10.1016/B978-0-444-53349-4.00180-1
  112. 112.
    DuPont™MX5000C™ Series data sheet and process information. http://www.microchem.com/PDFs_DuPont/DuPont%20MX5000C%20Tech%20Datasheet%20-%200508.pdf. Accessed 14 February 2014
  113. 113.
    Chemistry of DNQ/novolak photoresists (2013) Unpublished presentation. Microresist technology corporation. Berlin, GermanyGoogle Scholar
  114. 114.
    Grützner G (2010) Chemie der Photoresiste und ihre Anwendung in der Fertigung hochpräziser Mikroteile (Chemistry of photoresists and application in the fabrication of high-precision microparts). 5. Dortmunder Summer School Mikrotechnik (5th Dortmund summer school on MEMS). Tutorial NotesGoogle Scholar
  115. 115.
    Lithography overviews—Positive versus negative tone photoresists (2014) MicroChem, Newton, MA. http://www.microchem.com/Prod-LithographyOverviewPosNeg.htm. Accessed 18 February 2014
  116. 116.
    Williamson W, Shields EA (2003) SU-8 as an electron beam lithography resist. IEEE Xplore. doi: 10.1109/UGIM.2003.1225696 Google Scholar
  117. 117.
    Altpeter DM (2005) Description of SU-8. Twente University. http://www.mesacrl.utwente.nl/mis/generalinfo/downloads/equipment/Delta%2020%20SU-8/Description%20of%20SU.pdf. Acccessed 12 August 2013
  118. 118.
    Cox RJ, Gelorme JD, Gutierrez SAR (1989) Photoresist composition and printed circuit boards and packages made therewith. US patent No. 4882245Google Scholar
  119. 119.
    del Campo A, Greiner C (2007) SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography—Topical review. J Micromech Microeng 17:R81–R95CrossRefGoogle Scholar
  120. 120.
    Pfeiffer K (2013) SU-8 exposure and polymerization properties. Unpublished notes. microresist technology corporation, Berlin, GermanyGoogle Scholar
  121. 121.
    SU-8 2000 Permanent epoxy negative photoresist (2014) Processing guidelines. MicroChem, Newton, MA. http://microchem.com/pdf/SU-82000DataSheet2000_5thru2015Ver4.pdf Accessed 18 February 2014
  122. 122.
    Traisigkhachol O, Gatzen HH (2010) High aspect ratio micromolds for the electroplating of micro electro discharge machining tools. Microsystem Technol 16:1377–1383CrossRefGoogle Scholar
  123. 123.
    Information provided by J Schulz, Microworks, Eggenstein-Leopoldshafen, GermanyGoogle Scholar
  124. 124.
    Ostendorf A, Chichkov BN (2006) Two-photon photopolymerization: a new approach to micromachining. Photonics Spectra. http://www.aerotech.com/media/246109/TwoPhotonPoly.pdf. Accessed 20 February 2014
  125. 125.
    Johnstone RW (2014) Exposure and Development of PMMA. http://www.ece.ualberta.ca/~rj/phd-thesis/lit2.html. Accessed 18 February 2014
  126. 126.
    Schulz J (2014) Resists for Direct LIGA (unpublished notes) Microworks. Eggenstein-Leopoldshafen, GermanyGoogle Scholar
  127. 127.
    Dow Corning® XR-1541 e-beam resist - Hydrogen silsesquioxane electron beam spin-on resist (2008) Product Information. http://sindhu.ece.iisc.ernet.in/nanofab/twikii/pub/Main/RaithE-beamLitho/HSQ_data_sheet.pdf. Accessed 15 February 2014
  128. 128.
    Olynick DL, Cord B, Schipotinin A, Ogletree DF, Schuck PJ (2010) Electron-beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in situ electron-beam-induced desorption. J Vac Sci Technol 28:581–598. doi: 10.1116/1.3425632 CrossRefGoogle Scholar
  129. 129.
    Brainard RL (2009) Photoresists for extreme ultraviolet lithography. In: Bakshi V (ed) EUV lithography. SPIE Bellingham, WAGoogle Scholar
  130. 130.
    Higgins C (2011) Extreme ultraviolet photoresists—Film quantum yields and LER of thin film resists. Ph. D. thesis, University at Albany, State University of New York. http://search.proquest.com/docview/870021463. Accessed 22 February 2014
  131. 131.
    Michaelson TB, Jamieson AT, Pawloski AR, Byers J, Acheta A, Willson CG (2004) Understanding the role of base quenchers in photoresists. In: Sturtevant JL (ed) Advances in resist technology and processing XXI. Proc SPIE 5376:1282–1293Google Scholar
  132. 132.
    Pawloski AR, Nealey PF (2002) The multifunctional role of base quenchers in chemically amplified photoresists. Chem Mater 14:4192–4201. doi: 10.1021/cm0200947 CrossRefGoogle Scholar
  133. 133.
    What are proteins and what do they do? (2014) Genetics home reference. http://ghr.nlm.nih.gov/handbook/howgeneswork/protein. Accessed 14 February 2014
  134. 134.
    What is DNA? (2014) Genetics home reference. http://ghr.nlm.nih.gov/handbook/basics/dna. Accessed 14 February 2014
  135. 135.
    Mandal A (2014) What are lipids? News-medical. http://www.news-medical.net/health/What-are-Lipids.aspx. Accessed 14 February 2014

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Center for Production Technology, Institute for Micro Production TechnologyLeibniz Universität HannoverGarbsenGermany
  2. 2.KIT Division 5, Physics and MathematicsKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  3. 3.Institute of Electromagnetic FieldsETH ZurichZurichSwitzerland

Personalised recommendations