Skip to main content

Etching Technologies

  • Chapter
  • First Online:
  • 4816 Accesses

Abstract

Solid surfaces can be etched by wet processes (wet-chemical or electrochemical), dry processes (physical, chemical, or a combination of both), or mechanical processes (without or with a chemical contribution). The wet etch attack may be chemical by a liquid etchant or electrochemical (a reversal of electrochemical deposition) by an electrolyte under the influence of a current. In physical dry etching , the substrate is bombarded by ions (ion beam etching). Chemical etching may either use a plasma, enhancing the chemical attack by dissociating the etchant’s volatile chemical species (plasma etching), or a vapor (vapor phase etching). Physical-chemical processes combine ion bombardment with chemical attack through dissociated chemical species. Mechanical processes are powder blasting and (on the border between mechanical and physical, with and without a chemical component) cluster beam technologies. Subject to etching may be either the substrate material itself (bulk etching/micromachining) or thin-films at the surface (surface etching/micromachining). Particularly bulk micromachining of single crystal silicon takes advantage of etch-limiting crystal planes for constructing three-dimensional patterns in the substrate material.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ätzen (etching) (2013) Thieme Römpp. http://www.roempp.com/prod/. Accessed 20 Mar 2013

  2. Kern W, Deckert CD (1978) Chemical etching. In: Vossen JL, Kern W (eds) Thin film processes. Academic Press, New York

    Google Scholar 

  3. Lehmann HW (1991) Plasma-assisted etching. In: Vossen JL, Kern W (eds) Thin film processes II. Academic Press, San Diego

    Google Scholar 

  4. Aquatic chemistry, complexation (2013) Utah State University, Price, Utah. http://uwrl.usu.edu/www/doucette/5620/CEE%205620%20complex6.pdf. Accessed 1 May 2013

  5. Fabricating MEMS and nanotechnology (2013) MEMSnet. http://www.memsnet.org/mems/fabrication.html. Accessed 20 March 2013

  6. Madou MJ (2002) Fundamentals of microfabrication, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  7. Harris TW (1976) Chemical milling. Charendon Press, Oxford

    Google Scholar 

  8. Editors Encycl Britannica (2013) Etching. Encycl Britannica. http://www.britannica.com/EBchecked/topic/193841/etching. Accessed 19 Mar 2013

  9. Urs Graf, aka Urs Graf the Elder (2013) The Athenum. http://www.the-athenaeum.org/people/detail.php?id=4806. Accessed 21 Mar 2013

  10. van Rijn R (2012) Biography and chronology . http://www.rembrandtpainting.net/rembrandt_life_and_work.htm. Accessed 21 March 2013

  11. Hanfoug R (2011) A controlled wet etch process. MEMS Library. http://memslibrary.com/guest-articles/47-silicon-etching/11-a-controlled-wet-etch-process.html. Accessed 27 Mar 2013

  12. Büttgenbach S (1994) Mikromechanik. Teubner Studienbücher Angewandte Physik (Teubner textbooks of applied physics), 2nd edn. B.G. Teubner, Stuttgart

    Google Scholar 

  13. Silicium (silicon) (2013) Thieme Römpp. http://www.roempp.com/prod/. Accessed 20 Mar 2013

  14. Kittel C (1976) Introduction into solid state physics. Wiley, New York

    Google Scholar 

  15. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College, Philadelphia

    Google Scholar 

  16. Ohring M (2002) Material science of thin films, deposition and structure, 2nd edn. Academic Press, San Diego

    Google Scholar 

  17. Sze SM (2001) Semiconductor devices: physics and technology, 2nd edn. Wiley, New York

    Google Scholar 

  18. Elwenspoek M, Jansen H (2004) Silicon micromachining, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  19. Peterson KE (1982) Silicon as a mechanical material. Proc IEEE 70:420–457

    Article  Google Scholar 

  20. Jamieson JC (1963) crystal structures at high pressures of metallic modifications of Silicon and Germanium. Science 139:762–764. doi:10.1126/science.139.3556.762

    Article  Google Scholar 

  21. McMillan PF, Wilson M, Daisenberger D, Machon D (2005) A density-driven phase transition between semiconducting and metallic polyamorphs of silicon. Nat Mater 4:680–684. doi:10.1038/nmat1458

    Article  Google Scholar 

  22. Miller WH (2013) The 1911 class encyclopedia. http://www.1911encyclopedia.org/William_Hallowes_Miller. Accessed 22 Mar 2013

  23. Jia G, Madou MJ (2006) MEMS fabrication. In: Gad-el-Hak M (ed) MEMS design and fabrication, 2nd edn. CPC Press, Boca Raton

    Google Scholar 

  24. Cheval de frise (2013) http://shelf3d.com/i/Chevaux%20de%20frise. Accessed 04 Apr 2013

  25. Elwenspoek M (1993) On the mechanism of anisotropic etching of silicon. J Electrochem Soc 140:2075–2080

    Article  Google Scholar 

  26. Seidel H, Cespregi L, Heuberger A, Baumgärtel H (1990) Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers. J Electrochem Soc 137:3612–3626

    Article  Google Scholar 

  27. Alkaline etching of Silicon (2007) Microech Systems Inc. http://www.microtechprocess.com/pdf/.pdf. Accessed 26 Mar 2013

  28. Schnackenberg U, Benecke W, Lange P (1991) TMAHW etchants for silicon micromachining. Tech Digest Transducers 91:815–818

    Google Scholar 

  29. Kendall DL, de Guel GR, Torres-Jacome A (1982) The Wagon wheel method applied around the (011) zone of silicon. In: Electrochemical society 181st meeting abstract, pp 209–210

    Google Scholar 

  30. Wind RA, Hines MA (2000) Macroscopic etch anisotropies and microscopic reaction mechanisms: a micromachined structure for the rapid assay of etchant anisotropy. Surf Sci 460:21–38

    Article  Google Scholar 

  31. Fabricating MEMS and nanotechnology (2013) MEMS and Nanotechnology Exchange. https://www.mems-exchange.org/MEMS/fabrication.html. Accessed 22 Apr 2013

  32. Greenwood JC (1969) Ethylene diamine-cathecol-water mixture shows preferential etching of p-n junction. J Electrochem Soc 116:1325–1326

    Article  Google Scholar 

  33. Seidel H, Cespregi L, Heuberger A, Baumgärtel H (1990) I. Anisotropic etching of crystalline silicon in alkaline solutions II. Influence of dopants. J Electrochem Soc 137:3626–3632

    Article  Google Scholar 

  34. Waggener HA (1970) Electrochemically controlled thinning of silicon. Bell Sys Tech J 49:473–475

    Article  Google Scholar 

  35. Menz W, Mohr J, Paul O (2001) Microsystem technology. Wiley-VCH, Weinheim

    Google Scholar 

  36. Nathanson HC, Newell WE, Wickstrom RA, Davies JR Jr (1967) The resonant-gate transistor. IEEE Trans Electron Devices 14:117–133

    Article  Google Scholar 

  37. Howe RT, Muller RS (1986) Resonant-microbridge vapor sensor. IEEE Trans Electron Devices 33:499–506

    Article  Google Scholar 

  38. Chou A T-K (2004) MEMS etching technology, Intel Corp. http://www.avsusergroups.org/pag_pdfs/PEUG_09_2004_Chou.pdf. Accessed 25 Apr 2013

  39. Bhushan B (1995) Tribology of head-medium interface. In: Proceedings of APMRC ’95 tribology workshop part I, Singapore

    Google Scholar 

  40. Caro J (2013) Etchant recommendations. PCI, Leibniz Universität Hannover, Germany (unpublished)

    Google Scholar 

  41. Plasma pre-treatment for vacuum deposition (2011) Unpublished company presentation. Von Ardenne Anlagentechnik, Dresden

    Google Scholar 

  42. Inverse Sputter-Ätzeinrichtung (Inverse sputter etching system) (no year) Unpublished company report. Von Ardenne Anlagentechnik, Dresden, Germany

    Google Scholar 

  43. Harper JME, Cuomo JJ, Kaufman HR (1982) Technology and applications of broad-beam ion sources used in sputtering, part II, applications. J. Vac Sci Technol 21:737–756

    Article  Google Scholar 

  44. Puckett PR, Michel SL, Hughes WE (1991) Ion Beam Etching. In: Vossen JL, Kern W (eds) Thin film processes II. Academic Press, San Diego

    Google Scholar 

  45. Source Grids (2013) Plasma Process Group, Inc, Windsor, Colorado. https://www.plasmaprocessgroup.com/cgi/commerce.cgi?search=action&category=1100. Accessed 18 Apr 2013

  46. Oechsner H, Waldorf I, Wolf GK (1995) Teilchenstrahlgestützte Verfahren (Particle beam based processes). In: Kienel G, Röll K (eds) Vakuumbeschichtung 2 (Vacuum deposition 2). Springer, Berlin

    Google Scholar 

  47. Stevie FA, Giannuzzi LA, Prenitzer BI (2005) The focused. In: Giannuzzi LA, Stevie FA (eds) Introduction to focused ion beams: instrumentation, theory, techniques, and practice. Springer, New York

    Google Scholar 

  48. Volkert CA, Minor AM (2007) Focused ion beam microscopy and micromachining. MRS Bull 32:389–399

    Article  Google Scholar 

  49. Müller EW, Tsong TT (1969) Field ion microscopy principles and applications. Elsevier, New York

    Google Scholar 

  50. Krohn VE, Ringo GR (1975) Ion source of high brightness using liquid metal. Appl Phys Lett 27:479–81. http://dx.doi.org/10.1063/1.88540

  51. Seliger RL, Ward JW, Wang V, Kubena RL (1979) A high-intensity scanning ion probe with submicrometer spot size. Appl Phys Lett 34:310–312

    Article  Google Scholar 

  52. Suutala A (2009) Focused ion beam technique in nanofabrication. In: The meeting of national graduate school of nanoscience. https://www.jyu.fi/science/muut_yksikot/nsc/en/studies/ngs/course/meeting09/suutala_esitys. Accessed 19 Apr 2013

  53. Crawford CK (2003) Ion charge neutralization for electron beam devices. US patent 4,249,077

    Google Scholar 

  54. Utke I, Hoffmann P, Melngailis J (2008) Gas-assisted focused electron beam and ion beam processing and fabrication. J Vac Sci Technol B 26:1197–1276. doi:10.1116/1.2955728

    Article  Google Scholar 

  55. Casey DJ Jr, Doyle AF, Lee RG, Stewart DK, Zimmermann H (1994) Gas-assisted etching with focused ion beam technology. Microelectronic Eng 24:43–50

    Article  Google Scholar 

  56. Handbook Committee (1992) ASM Handbook volume 10: materials characterization, 3rd print. ASM International, Park

    Google Scholar 

  57. Andreeva E (2005) Fertigung und Erprobung eines Mikro-Wirbelstromsensors zur Abstandsmessung (Fabrication and evaluation of a micro eddy current sensor for proximity measurement). Ph.D. thesis, Leibniz Universität Hannover, Germany

    Google Scholar 

  58. Rejntjens S, Puers R (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11:287–300

    Article  Google Scholar 

  59. Ali MY, Hung W, Yongqi F (2010) A review of focused ion beam sputtering. Int J Precis Eng Manuf 11:157–170

    Article  Google Scholar 

  60. Lehmann HW (1988) Plasma etching to quantum dots. J Vac Sci Technol B 6:1881–1884. doi:10.1116/1.584193

    Article  Google Scholar 

  61. Irving SM, Lemons KE, and Bobos GE (1971) Gas plasma vapor etching process. US patent 3,615,956

    Google Scholar 

  62. Cabrera N, Mott NF (1949) Theory of the oxidation of metals. Rep Prog Phys 12:163–184. doi:10.1088/0034-4885/12/1/308

    Article  Google Scholar 

  63. Zhdanov VP, Kasemo B (2008) Cabrera-Mott kinetics of oxidation of nm-sized metal particles. Chem Phys Lett 452:285–288. doi:10.1016/j.cplett.2008.01.006

    Article  Google Scholar 

  64. Zhdanov VP (2012) Kasemo B (2012) Cabrera-Mott kinetics of oxidation of metal nanowires. Appl Phys Lett 100:243105. doi:10.1063/1.4729059

    Article  Google Scholar 

  65. Traisigkhachol O, Schmid H, Marc M, Gatzen HH (2010) Applying SU-8TM to the fabrication of micro electro discharge machining electrodes. Microsyst Technol 16:1445–1450. doi:10.1007/s00542-009-1011-2

  66. Petasch W, Räuchle E, Muegge H, Muegge K (1997) Duo-Plasmaline—a linearly extended homogeneous low pressure plasma source. Surf Coat Technol 93:112–118. doi:10.1016/S0257-8972(97)00015-7

    Article  Google Scholar 

  67. Manual, Remote Microwave Plasma System (2013) VA TePla AG Plasma Systems, Kirchheim, Germany. http://www.pvatepla.com/produkte/plasmaanlagen/microwellen-plasma/waferduennen/ps-4008-asyntis–oem. Accessed 2 May 2013

  68. Dentinger PM, Clift WM, Goods SH (2002) Removal of SU-8 photoresist for thick film applications. Microelectron Eng 61–62:993–1000

    Article  Google Scholar 

  69. Etching Process (2013) MEMSnet. http://www.memsnet.org/mems/processes/etch.html. Accessed 27 Apr 2013

  70. Vapor HF (hydrogen fluoride)/vapor phase sacrificial release etching for MEMS (2013) Memsstar, Livingston, UK. http://www.memsstar.com/vapor-HF-hydrogen-fluoride-vapor-phase-etching.php. Accessed 27 Apr 2013

  71. Xenon DiFluoride (XeF2) Silicon etching (2013). Memsstar, Livingston, UK. http://www.memsstar.com/xenon-difluouride-xef2-etching.php. Accessed 27 Apr 2013

  72. Witvrouw A, Du Bois B, De Moor P, Verbist A, Van Hoof C, Bender H, Baert K (2000) A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal. In: Proceedings of SPIE 4174, micromachining and microfabrication process technology VI, 130. doi:10.1117/12.396423

  73. Reactive ion beam etching (2013) MicroSystems, Hohenstein-Ernstthal, Germany. http://www.microsystems.de/processes-technologies/ion-beam-technologies/reactive-ion-beam-etching.html. Accessed 23 Apr 2013

  74. Chemical assisted ion beam etching (2013) MicroSystems, Hohenstein-Ernstthal, Germany. http://www.microsystems.de/processes-technologies/ion-beam-technologies/chemical-assisted-ion-beam-etching.html. Accessed 23 Apr 2013

  75. Oxford Instruments (2013) Reactive ion etching. http://www.oxford-instruments.com/products/etching-deposition-and-growth/plasma-etch-deposition/rie. Accessed 24 Apr 2013

  76. Reinberg AR (1973) Radial flow reactor. US patent 3,757,733, assigned to Texas Instruments

    Google Scholar 

  77. Cheung V (2010) Reactive ion etching. UC Berkeley. http://www-inst.eecs.berkeley.edu/~ee143/fa10/lectures/Lec_15.pdf. Accessed 25 Apr 2013

  78. Rack PD (no year) outline. University of Tennessee. http://web.utk.edu/~prack/Thin%20films/Etching.pdf. Accessed 25 Apr 2013

  79. Lu F (2008) Introduction to deep reactive ion etching. Duke University. http://people.ee.duke.edu/~flu/index_files/Introduction%20to%20Deep%20reactive%20ion%20etching.pdf. Accessed 26 Apr 2013

  80. Laermer F, Schilp A (1994) Method for anisotropically etching silicon. US patent 5,501,893, assigned to Robert Bosch GmbH

    Google Scholar 

  81. Laermer F, Schilp A (1999) Method for anisotropically etching silicon. US patent 6,531,068, assigned to Robert Bosch GmbH

    Google Scholar 

  82. Lärmer F, Urban A (Germany) (2008) European inventor of the year 2007 in the category “Industry”. http://www.epo.org/learning-events/european-inventor/finalists/2007/laermer.html. Accessed 26 Apr 2013

  83. Sainiemi L (2009) Cryogenic deep reactive ion etching of silicon micro and nanostructures. Ph.D. thesis, Helsinki University of Technology

    Google Scholar 

  84. Tachi S, Kazunori K, Okudaira S (1988) Low-temperature reactive ion etching and microwave plasma etching of silicon. Appl Phys Lett 52:616–618

    Article  Google Scholar 

  85. Oxford Instruments (2013) Inductively coupled plasma (ICP). http://www.oxford-instruments.com/products/etching-deposition-and-growth/plasma-etch-deposition/icp-etch. Accessed 26 Apr 2013

  86. MacDonald NC (1996) SCREAM microelectromechanical systems. Microelectron Eng 32:49–73

    Article  Google Scholar 

  87. Zhang Wh, Zhang Wb, Turner K, Hartwell PG (2004) SCREAM’03: a single mask process for high-Q single crystal silicon MEMS. In: Proceedings of IMECE2004-61140

    Google Scholar 

  88. Wensink H (2002) Fabrication of microstructures by. Ph.D. thesis, University of Twente, Enschede, The Netherlands

    Google Scholar 

  89. Chung CW, Brock JR, Trachtenberg I (1993) Reactive cluster beam etching of fine patterns. Appl Phys Lett 63:3341–3343. doi:10.1063/1.110164

  90. Kirkpatrick A (2003) Gas cluster ion beam applications and equipment. Nucl Instrum Methods Phys Res B:830–837. doi:10.1016/S0168-583X(03)00858-9

  91. Wedding CA, Strbik III OM, Peters EF, Guy JW, Wedding DK (2006) Overview of flexible plasma display technology. In: Proceedings of ASID ’06, pp 323–327

    Google Scholar 

  92. Fujinaga A (2008) Method of forming partitions of plasma display panel and device for forming partitions. US patent application 20080014837 A1. Originally assigned to Fujitsu Hitachi Plasma Display Limited

    Google Scholar 

  93. The Nobel Prize in Chemistry 1996 (2013) www.nobelprize.org Nobel Media AB. http://nobelprize.org/nobel_prizes/chemistry/laureates/1996/. Accessed 26 May 2014

  94. Yamada I, Matsuo J, Toyoda N, Kirkpatrick A (2001) Materials processing by gas cluster ion beams. Mater Sci Eng R34:231–295

    Article  Google Scholar 

  95. Yamaguchi Y, Gspann J (2002) Large-scale molecular dynamics simulations of cluster impact and erosion processes on a diamond-surface. Phy Rev B—Condens Matter Mater Phy 66:1554081–15540810

    Google Scholar 

  96. Kanhere DG, Chacko S (2011) Melting of fine-sized systems. In: Sattler KD (ed) Handbook of nanophysics: principles and methods. CRC Press, Boca Raton

    Google Scholar 

  97. Gas cluster ion beam equipment (2014) Tel Epion. http://www.jst.go.jp/tt/EN/cips_details/pdf_2/4-2.pdf. Accessed 24 May 2014

  98. Gas cluster ion beam system (2014) Tokyo Electron. http://www.tel.com/product/spe/mm/index.htm. Accessed 24 May 2014

  99. Yamada I (2014) Historical milestones and future prospects of cluster ion beam technology. Appl Surf Sci. doi:http://dx.doi.org/10.1016/j.apsusc.2014.03.147

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans H. Gatzen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gatzen, H.H., Saile, V., Leuthold, J. (2015). Etching Technologies. In: Micro and Nano Fabrication. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44395-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44395-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44394-1

  • Online ISBN: 978-3-662-44395-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics