Skip to main content

Spiro-Linked Hyperbranched Architecture for Electrophosphorescent Polymers

  • Chapter
  • First Online:
Electrophosphorescent Polymers Based on Polyarylether Hosts

Part of the book series: Springer Theses ((Springer Theses))

  • 273 Accesses

Abstract

Introducing phosphorescent emitters into polymers to harvest both singlet and triplet excitons in the EL process has been proved to be an effective approach to enhance the device efficiency [16]. To ensure that all the triplet excitons are confined effectively on the phosphorescent emitters, triplet energy back transfer (TEBT) from phosphors to polymer hosts should be inhibited (see Sect. 1.3 in Chap. 1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen XW, Liao JL, Liang YM et al (2003) High-efficiency red-light emission from polyfluorenes grafted with cyclometalated iridium complexes and charge transport moiety. J Am Chem Soc 125:636–637

    Article  CAS  Google Scholar 

  2. Sandee AJ, Williams CK, Evans NR et al (2004) Solution-processible conjugated electrophosphorescent polymers. J Am Chem Soc 126:7041–7048

    Article  CAS  Google Scholar 

  3. Evans NR, Devi LS, Mak CSK et al (2006) Triplet energy back transfer in conjugated polymers with pendant phosphorescent iridium complexes. J Am Chem Soc 128:6647–6656

    Article  CAS  Google Scholar 

  4. Jiang JX, Xu YH, Yang W et al (2006) High-efficiency white-light-emitting devices from a single polymer by mixing singlet and triplet emission. Adv Mater 18:1769–1773

    Article  CAS  Google Scholar 

  5. Wu F-I, Yang X-H, Neher D et al (2007) Efficient white-electrophosphorescent devices based on a single polyfluorene copolymer. Adv Funct Mater 17:1085–1092

    Article  CAS  Google Scholar 

  6. Chien CH, Liao SF, Wu CH et al (2008) Electrophosphorescent polyfluorenes containing osmium complexes in the conjugated backbone. Adv Funct Mater 18:1430–1439

    Article  CAS  Google Scholar 

  7. Chen YC, Huang GS, Hsiao CC et al (2006) High triplet energy polymer as host for electrophosphorescence with high efficiency. J Am Chem Soc 128:8549–8558

    Article  CAS  Google Scholar 

  8. Wu ZL, Xiong Y, Zou JH et al (2008) High-Triplet-Energy poly 9,9 ‘-bis(2-ethylihexyl)-3,6-fluorene) as host for blue and green phosphorescent complexes. Adv Mater 20:2359–2364

    Article  CAS  Google Scholar 

  9. Liu J, Pei Q (2010) Poly(M-Phenylene): conjugated polymer host with high triplet energy for efficient blue electrophosphorescence. Macromolecules 43:9608

    Article  CAS  Google Scholar 

  10. Shao KF, Xu XJ, Yu G et al (2006) Blue electrophosphorescent light-emitting device using a novel nonconjugated polymer as host materials. Chem Lett 35:404–405

    Article  CAS  Google Scholar 

  11. Yeh HC, Chien CH, Shih PI et al (2008) Polymers derived from 3,6-fluorene and tetraphenylsilane derivatives: solution-processable host materials for green phosphorescent oleds. Macromolecules 41:3801–3807

    Article  CAS  Google Scholar 

  12. Huang SP, Jen TH, Chen YC et al (2008) Effective shielding of triplet energy transfer to conjugated polymer by its dense side chains from phosphor dopant for highly efficient electrophosphorescence. J Am Chem Soc 130:4699–4707

    Article  CAS  Google Scholar 

  13. King SM, Al-Attar HA, Evans RJ et al (2006) The use of substituted iridium complexes in doped polymer electrophosphorescent devices: the influence of triplet transfer and other factors on enhancing device performance. Adv Funct Mater 16:1043–1050

    Article  CAS  Google Scholar 

  14. Shao S, Ma Z, Ding J et al (2012) Spiro-linked hyperbranched architecture in electrophosphorescent conjugated polymers for tailoring triplet energy back transfer. Adv Mater 24:2009–2013

    Article  CAS  Google Scholar 

  15. Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850

    Article  CAS  Google Scholar 

  16. Saragi TPI, Spehr T, Siebert A et al (2007) Spiro compounds for organic optoelectronics. Chem Rev 107:1011–1065

    Article  CAS  Google Scholar 

  17. Ostrowski JC, Robinson MR, Heeger AJ et al. (2002) Amorphous iridium complexes for electrophosphorescent light emitting devices. Chem Commun 7:784–785

    Google Scholar 

  18. Yu XM, Zhou GJ, Lam CS et al (2008) A yellow-emitting iridium complex for use in phosphorescent multiple-emissive-layer white organic light-emitting diodes with high color quality and efficiency. J Organomet Chem 693:1518–1527

    Article  CAS  Google Scholar 

  19. Sudhakar M, Djurovich PI, Hogen-Esch TE et al (2003) Phosphorescence quenching by conjugated polymers. J Am Chem Soc 125:7796–7797

    Article  CAS  Google Scholar 

  20. McGee KA, Mann KR (2007) Selective low-temperature syntheses of facial and meridional tris-cyclometalated iridium(III) complexes. Inorg Chem 46:7800–7809

    Article  CAS  Google Scholar 

  21. Wong KT, Liao YL, Lin YT et al (2005) Spiro-configured bifluorenes: highly efficient emitter for uv organic light-emitting device and host material for red electrophosphorescence. Org Lett 7:5131–5134

    Article  CAS  Google Scholar 

  22. Gong X, Ostrowski JC, Bazan GC et al (2003) Electrophosphorescence from a conjugated copolymer doped with an iridium complex: high brightness and improved operational stability. Adv Mater 15:45–49

    Article  CAS  Google Scholar 

  23. Gong X, Ostrowski JC, Moses D et al (2003) Electrophosphorescence from a polymer guest-host system with an iridium complex as guest: forster energy transfer and charge trapping. Adv Funct Mater 13:439–444

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyang Shao .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shao, S. (2014). Spiro-Linked Hyperbranched Architecture for Electrophosphorescent Polymers. In: Electrophosphorescent Polymers Based on Polyarylether Hosts. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44376-7_5

Download citation

Publish with us

Policies and ethics