Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 269 Accesses

Abstract

Flexible phone screens, luminescent window glass, and large-area lighting roofs, which were incredible about 30 years ago, have now or will in the near future become a part of our lives owing to the emergence of organic light-emitting diodes (OLEDs). Because of their high display quality, low consumption, lightweighting, and flexible features, OLEDs have been recognized as the next-generation display and lighting technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pope M, Magnante P, Kallmann HP (1963) Electroluminescence in organic crystals. J Chem Phys 38:2042–2043

    Article  CAS  Google Scholar 

  2. Tang CW, Vanslyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915

    Article  CAS  Google Scholar 

  3. Burroughes JH, Bradley DDC, Brown AR et al (1990) Light-emitting-diodes based on conjugated polymers. Nature 347:539–541

    Article  CAS  Google Scholar 

  4. Kohler A, Wilson JS, Friend RH (2002) Fluorescence and phosphorescence in organic materials. Adv Eng Mater 4:453–459

    Article  CAS  Google Scholar 

  5. Evans RC, Douglas P, Winscom CJ (2006) Coordination complexes exhibiting room-temperature phosphorescence: evaluation of their suitability as triplet emitters in organic light emitting diodes. Coord Chem Rev 250:2093–2126

    Article  CAS  Google Scholar 

  6. Forster T (1959) 10th spiers memorial lecture—transfer mechanisms of electronic excitation. Discuss Faraday Soc 27:7–17

    Google Scholar 

  7. Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850

    Article  CAS  Google Scholar 

  8. Baldo MA, O’Brien DF, You Y et al (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154

    Article  CAS  Google Scholar 

  9. Xiao LX, Chen ZJ, Qu B et al (2011) Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv Mater 23:926–952

    Article  CAS  Google Scholar 

  10. Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010

    Article  CAS  Google Scholar 

  11. Tao YT, Yang CL, Qin JG (2011) Organic host materials for phosphorescent organic light-emitting diodes. Chem Soc Rev 40:2943–2970

    Article  CAS  Google Scholar 

  12. Zhou G, Qian G, Ma L et al (2005) Polyfluorenes with phosphonate groups in the side chains as chemosensors and electroluminescent materials. Macromolecules 38:5416–5424

    Article  CAS  Google Scholar 

  13. Fang J, Wallikewitz BH, Gao F et al (2011) Conjugated Zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes. J Am Chem Soc 133:683–685

    Article  CAS  Google Scholar 

  14. Noh YY, Lee CL, Kim JJ et al (2003) Energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes. J Chem Phys 118:2853–2864

    Article  CAS  Google Scholar 

  15. Sudhakar M, Djurovich PI, Hogen-Esch TE et al (2003) Phosphorescence quenching by conjugated polymers. J Am Chem Soc 125:7796–7797

    Article  CAS  Google Scholar 

  16. van Dijken A, Bastiaansen J, Kiggen NMM et al (2004) Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes. J Am Chem Soc 126:7718–7727

    Article  Google Scholar 

  17. Wu ZL, Xiong Y, Zou JH et al (2008) High-triplet-energy poly 9,9 ‘-bis(2-ethylihexyl)-3,6-fluorene) as host for blue and green phosphorescent complexes. Adv Mater 20:2359–2364

    Article  CAS  Google Scholar 

  18. Yeh HC, Chien CH, Shih PI et al (2008) Polymers derived from 3,6-fluorene and tetraphenylsilane derivatives: solution-processable host materials for green phosphorescent oleds. Macromolecules 41:3801–3807

    Article  CAS  Google Scholar 

  19. Liu J, Pei Q (2010) Poly(M-Phenylene): conjugated polymer host with high triplet energy for efficient blue electrophosphorescence. Macromolecules 43:9608–9612

    Article  CAS  Google Scholar 

  20. Shao KF, Xu XJ, Yu G et al (2006) Blue electrophosphorescent light-emitting device using a novel nonconjugated polymer as host materials. Chem Lett 35:404–405

    Article  CAS  Google Scholar 

  21. Fei T, Cheng G, Hu D et al (2009) A wide band gap polymer derived from 3,6-carbazole and tetraphenylsilane as host for green and blue phosphorescent complexes. J Polym Sci, Part A: Polym Chem 47:4784–4792

    Article  CAS  Google Scholar 

  22. Evans NR, Devi LS, Mak CSK et al (2006) Triplet energy back transfer in conjugated polymers with pendant phosphorescent iridium complexes. J Am Chem Soc 128:6647–6656

    Article  CAS  Google Scholar 

  23. King SM, Al-Attar HA, Evans RJ et al (2006) The use of substituted Iridium complexes in doped polymer electrophosphorescent devices: the influence of triplet transfer and other factors on enhancing device performance. Adv Funct Mater 16:1043–1050

    Article  CAS  Google Scholar 

  24. Huang SP, Jen TH, Chen YC et al (2008) Effective shielding of triplet energy transfer to conjugated polymer by its dense side chains from phosphor dopant for highly efficient electrophosphorescence. J Am Chem Soc 130:4699–4707

    Article  CAS  Google Scholar 

  25. Zhang K, Tao Y, Yang C et al (2008) Synthesis and properties of carbazole main chain copolymers with oxadiazole pendant toward bipolar polymer host: tuning the homo/lumo level and triplet energy. Chem Mater 20:7324–7331

    Article  CAS  Google Scholar 

  26. Chen YC, Huang GS, Hsiao CC et al (2006) High triplet energy polymer as host for electrophosphorescence with high efficiency. J Am Chem Soc 128:8549–8558

    Article  CAS  Google Scholar 

  27. Takasu I, Mizuno Y, Uchikoga S et al. (2009) Improvement in triplet exciton confinement of electrophosphorescent device using fluorinated polymer host SPIE:7415, 74150B

    Google Scholar 

  28. Mathai MK, Choong V-E, Choulis SA et al (2006) Highly efficient solution processed blue organic electrophosphorescence with 14 Lm/W luminous efficacy. Appl Phys Lett 88:243512

    Article  Google Scholar 

  29. Lee CL, Kang NG, Cho YS et al (2003) Polymer electrophosphorescent device: comparison of phosphorescent dye doped and coordinated systems. Opt Mater 21:119–123

    Article  CAS  Google Scholar 

  30. Tokito S, Suzuki M, Sato F et al (2003) High-efficiency phosphorescent polymer light-emitting devices. Org Electron 4:105–111

    Article  CAS  Google Scholar 

  31. Tokito S, Suzuki M, Sato F (2003) Improvement of emission efficiency in polymer light-emitting devices based on phosphorescent polymers. Thin Solid Films 445:353–357

    Article  CAS  Google Scholar 

  32. Furuta PT, Deng L, Garon S et al (2004) Platinum-functionalized random copolymers for use in solution-processible, efficient, near-white organic light-emitting diodes. J Am Chem Soc 126:15388–15389

    Article  CAS  Google Scholar 

  33. Poulsen DA, Kim BJ, Ma B et al (2010) Site isolation in phosphorescent bichromophoric block copolymers designed for white electroluminescence. Adv Mater 22:77–82

    Article  CAS  Google Scholar 

  34. Carlise JR, Wang XY, Weck M (2005) Phosphorescent side-chain functionalized poly(norbornene)s containing Iridium complexes. Macromolecules 38:9000–9008

    Article  CAS  Google Scholar 

  35. Kimyonok A, Domercq B, Haldi A et al (2007) Norbornene-based copolymers with iridium complexes and bis(carbazolyl)fluorene groups in their side-chains and their use in light-emitting diodes. Chem Mater 19:5602–5608

    Article  CAS  Google Scholar 

  36. Haldi A, Kimyonok A, Domercq B et al (2008) Optimization of orange-emitting electrophosphorescent copolymers for organic light-emitting diodes. Adv Funct Mater 18:3056–3062

    Article  CAS  Google Scholar 

  37. Chen XW, Liao JL, Liang YM et al (2003) High-efficiency red-light emission from polyfluorenes grafted with cyclometalated Iridium complexes and charge transport moiety. J Am Chem Soc 125:636–637

    Article  CAS  Google Scholar 

  38. Jiang JX, Jiang CY, Yang W et al (2005) High-efficiency electrophosphorescent fluorene-alt-carbazole copolymers n-grafted with cyclometalated ir complexes. Macromolecules 38:4072–4080

    Article  CAS  Google Scholar 

  39. Yang X-H, Wu F-I, Neher D et al (2008) Efficient red-emitting electrophosphorescent polymers. Chem Mater 20:1629–1635

    Article  CAS  Google Scholar 

  40. Ma ZH, Ding JQ, Zhang BH et al (2010) Red-emitting polyfluorenes grafted with quinoline-based iridium complex: “simple polymeric chain, unexpected high efficiency”. Adv Funct Mater 20:138–146

    Article  CAS  Google Scholar 

  41. Sandee AJ, Williams CK, Evans NR et al (2004) Solution-processible conjugated electrophosphorescent polymers. J Am Chem Soc 126:7041–7048

    Article  CAS  Google Scholar 

  42. Zhang K, Chen Z, Yang C et al (2008) Iridium complexes embedded into and end-capped onto phosphorescent polymers: optimizing pled performance and structure-property relationships. J Mater Chem 18:3366–3375

    Article  CAS  Google Scholar 

  43. Chien CH, Liao SF, Wu CH et al (2008) Electrophosphorescent polyfluorenes containing osmium complexes in the conjugated backbone. Adv Funct Mater 18:1430–1439

    Article  CAS  Google Scholar 

  44. Zhuang WL, Zhang Y, Hou Q et al (2006) High-efficiency, electrophosphorescent polymers with porphyrin-platinum complexes in the conjugated backbone: synthesis and device performance. J Polym Sci, Part A: Polym Chem 44:4174–4186

    Article  CAS  Google Scholar 

  45. Wong CT, Chan WK (1999) Yellow light-emitting poly(phenylenevinylene) incorporated with pendant ruthenium bipyridine and terpyridine complexes. Adv Mater 11:455–459

    Article  CAS  Google Scholar 

  46. Ma Z, Chen L, Ding J et al (2011) Green electrophosphorescent polymers with poly(3,6-carbazole) as the backbone: a linear structure does realize high efficiency. Adv Mater 23:3726–3729

    Article  CAS  Google Scholar 

  47. Fei T, Cheng G, Hu D et al (2010) Iridium complex grafted to 3,6-carbazole-alt-tetraphenylsilane copolymers for blue electrophosphorescence. J Polym Sci, Part A: Polym Chem 48:1859–1865

    Article  CAS  Google Scholar 

  48. Jiang JX, Xu YH, Yang W et al (2006) High-efficiency white-light-emitting devices from a single polymer by mixing singlet and triplet emission. Adv Mater 18:1769–1773

    Article  CAS  Google Scholar 

  49. Wu F-I, Yang X-H, Neher D et al (2007) Efficient white-electrophosphorescent devices based on a single polyfluorene copolymer. Adv Funct Mater 17:1085–1092

    Article  CAS  Google Scholar 

  50. Mei C, Ding J, Yao B et al (2007) Synthesis and characterization of white-light-emitting polyfluorenes containing orange phosphorescent moieties in the side chain. J Polym Sci, Part A: Polym Chem 45:1746–1757

    Article  CAS  Google Scholar 

  51. Zhang K, Chen Z, Yang C et al (2008) Stable white electroluminescence from single fluorene-based copolymers: using fluorenone as the green fluorophore and an iridium complex as the red phosphor on the main chain. J Mater Chem 18:291–298

    Article  CAS  Google Scholar 

  52. Park M-J, Kwak J, Lee J et al (2010) Single chain white-light-emitting polyfluorene copolymers containing iridium complex coordinated on the main chain. Macromolecules 43:1379–1386

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyang Shao .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shao, S. (2014). General Introduction. In: Electrophosphorescent Polymers Based on Polyarylether Hosts. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44376-7_1

Download citation

Publish with us

Policies and ethics