International Cryptology Conference

CRYPTO 2014: Advances in Cryptology – CRYPTO 2014 pp 169-187 | Cite as

Cryptography from Compression Functions: The UCE Bridge to the ROM

  • Mihir Bellare
  • Viet Tung Hoang
  • Sriram Keelveedhi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8616)

Abstract

This paper suggests and explores the use of UCE security for the task of turning VIL-ROM schemes into FIL-ROM ones. The benefits we offer over indifferentiability, the current leading method for this task, are the ability to handle multi-stage games and greater efficiency. The paradigm consists of (1) Showing that a VIL UCE function can instantiate the VIL RO in the scheme, and (2) Constructing the VIL UCE function given a FIL random oracle. The main technical contributions of the paper are domain extension transforms that implement the second step. Leveraging known results for the first step we automatically obtain FIL-ROM constructions for several primitives whose security notions are underlain by multi-stage games.Our first domain extender exploits indifferentiability, showing that although the latter does not work directly for multi-stage games it can be used indirectly, through UCE, as a tool for this end. Our second domain extender targets performance. It is parallelizable and shown through implementation to provide significant performance gains over indifferentiable domain extenders.

Keywords

Extractor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fast SHA-256 Implementations on Intel Architecture Processors, goo.gl/Hh81eB.
  2. 2.
    Intel AESNI Library, goo.gl/l2czm1.
  3. 3.
    Intel Carry-Less Multiplication Instruction and its Usage for Computing the GCM Mode, http://goo.gl/qJLrF1
  4. 4.
    Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert, F.-X., Yu, Y.: Leftover hash lemma, revisited. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 1–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs. Cryptology ePrint Archive, Report 2013/424 (2013); Preliminary version appeared in Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 398–415. Springer, Heidelberg (2013)Google Scholar
  7. 7.
    Bellare, M., Hoang, V.T., Keelveedhi, S.: Cryptography from compression functions: The UCE bridge to the ROM. Cryptology ePrint Archive (2014)Google Scholar
  8. 8.
    Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 296–312. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS 1993. ACM (1993)Google Scholar
  10. 10.
    Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: The three-key constructions. Journal of Cryptology 18(2), 111–131 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and UCEs: The case of computationally unpredictable sources. Cryptology ePrint Archive, Report 2014/099. To appear in Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 188–205. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Carter, L., Wegman, M.: Universal classes of hash functions. Journal of Computer and System Sciences 18(2), 143–154 (1979)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited: How to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Demay, G., Gaži, P., Hirt, M., Maurer, U.: Resource-restricted indifferentiability. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 664–683. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damgård for practical applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Keliher, L., Sui, J.: Exact maximum expected differential and linear probability for two-round advanced encryption standard. IET Information Security 1(2), 53–57 (2007)CrossRefGoogle Scholar
  19. 19.
    Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Minematsu, K., Tsunoo, Y.: Provably secure MACs from differentially-uniform permutations and AES-based implementations. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 226–241. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Mittelbach, A.: Salvaging indifferentiability in a multi-stage setting. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 603–621. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  22. 22.
    PKCS #1: RSA cryptography standard. RSA Data Security, Inc, Version 2.0. (September 1998)Google Scholar
  23. 23.
    Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. Journal of Computer and System Sciences 22, 265–279 (1981)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Mihir Bellare
    • 1
  • Viet Tung Hoang
    • 1
  • Sriram Keelveedhi
    • 1
  1. 1.Dept. of Computer Science and EngineeringUniversity of California San DiegoUSA

Personalised recommendations