Advertisement

Amorphous Group III–V Semiconductors

Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 190)

Abstract

Structural disorder is common to the amorphous Group IV and III–V semiconductors as manifested by an increase in bondlength and Debye-Waller factor and a decrease in coordination number relative to the crystalline phase. A second component of disorder, unique to compound semiconductors, is chemical disorder in the form of homopolar bonding. In this chapter, the application of XAS to the characterisation of both structural and chemical disorder in the amorphous Group III–V semiconductors is described with an emphasis on the identification and quantification of homopolar bonding. We show chemical disorder is characteristic of these materials, comprising \(\sim \)5–15 % of all bonds, and also demonstrate that XAS is an ideal technique for such studies.

Keywords

Amorphous Phase Near Neighbour Versus Semiconductor Amorphous Semiconductor EXAFS Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author gratefully acknowledges C.J. Glover, C.S. Schnohr, G. de M. Azevedo, G.J. Foran, K.M. Yu, S.M. Kluth and P. Kluth for significant contributions, fruitful collaborations and memorable times at XAS beamlines around the world in our pursuit of the atomic-scale structure of the amorphous Group III–V semiconductors. The author thanks the Australian Research Council, Australian Synchrotron Research Program and Australian Synchrotron for financial support. Sample fabrication was enabled through access to the ACT Node of the Australian National Fabrication Facility.

References

  1. 1.
    W.H. Zachariasen, J. Am. Chem. Soc. 54, 3841 (1932)Google Scholar
  2. 2.
    D.E. Polk, J. Non-Cryst. Solids 5, 365 (1971)Google Scholar
  3. 3.
    G.A.N. Connell, R.J. Temkin, Phys. Rev. B 9, 5323 (1974)Google Scholar
  4. 4.
    N. Mousseau, L.J. Lewis, Phys. Rev. B 56, 9461 (1997)Google Scholar
  5. 5.
    L.J. Lewis, A. De Vita, R. Carr, Phys. Rev. B 57, 1594 (1998)Google Scholar
  6. 6.
    S. Decoster, C.J. Glover, B. Johannessen, R. Giulian, D.J. Sprouster, P. Kluth, L.L. Araujo, Z. Hussain, C. Schnohr, H. Salama, F. Kremer, K. Temst, A. Vantomme, M.C. Ridgway, J. Synchrotron Radiat. 20, 426 (2013)Google Scholar
  7. 7.
    P. Stumm, D.A. Drabold, Phys. Rev. Lett. 79, 677 (1997)Google Scholar
  8. 8.
    B. Cai, D.A. Drabold, Phys. Rev. B 84, 075216 (2011)Google Scholar
  9. 9.
    J. Nord, K. Nordlund, J. Keinonen, Phys. Rev. B 68, 184104 (2003)Google Scholar
  10. 10.
    M. Ishimaru, Y. Zhang, X. Wang, W.-K. Chu, W.J. Weber, J. Appl. Phys. 109, 043512 (2011)Google Scholar
  11. 11.
    M.C. Ridgway, S.E. Everett, C.J. Glover, S.M. Kluth, P. Kluth, B. Johannessen, Z.S. Hussain, D.J. Llewellyn, G.J. Foran, G.M. de Azevedo, Nucl. Instrum. Methods B 250, 287 (2006)Google Scholar
  12. 12.
    M. Katsikini, F. Pinakidou, E.C. Paloura, W. Wesch, Appl. Phys. Lett. 82, 1556 (2003)Google Scholar
  13. 13.
    P. Deenapanray, M. Petravic, K.-J. Kim, B. Kim, G. Li, Appl. Phys. Lett. 83, 4948 (2003)Google Scholar
  14. 14.
    H. Kubota, T. Matsumoto, T. Hirayu, T. Fujiyoshi, R. Miyagawa, K. Miyahara, M. Onuki, Sol. Energy Mater. Sol. Cells 35, 353 (1994)Google Scholar
  15. 15.
    M.-L. Theye, A. Gheorghiu, H. Launois, J. Phys. C: Solid State Phys. 13, 6569 (1980)Google Scholar
  16. 16.
    D. Udron, A.-M. Flank, A. Gheorghiu, P. Lagarde, M.-L. Theye, Philos. Mag. Lett. 59, 9 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    N. Elgun, S.J. Gurman and E.A. Davis, J. Phys.: Cond. Matter 4, 7759 (1992)Google Scholar
  18. 18.
    N. Elgun, S.J. Gurman and E.A. Davis, J. Phys.: Cond. Matter 12, 4723 (2000)Google Scholar
  19. 19.
    M.C. Ridgway, G. de M. Azevedo, C.J. Glover, K.M. Yu, G.J. Foran, Nucl. Instrum. Methods B 199, 235 (2003)Google Scholar
  20. 20.
    A. Madan, M.P. Shaw, The Physics and Applications of Amorphous Semiconductors (Elsevier, 1988), p. 166Google Scholar
  21. 21.
    E. Fois, A. Selloni, G. Pastore, Q.-M. Zhang, R. Car, Phys. Rev. B 45, 13378 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    C. Molteni, L. Colombo, L. Miglio, Europhys. Lett. 24, 659 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    C. Molteni, L. Colombo, L. Miglio, Phys. Rev. B 50, 4371 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    H. Seong, L.J. Lewis, Phys. Rev. B 53, 4408 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    N. Mousseau, L.J. Lewis, Phys. Rev. Lett. 78, 1484 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    I. Ebbsjo, R.K. Kalia, a. Nakano, J.P. Rino, P. Vashishta, J. Appl. Phys. 87, 7708 (2000)Google Scholar
  27. 27.
    D. Udron, M.-L. Theye, D. Raoux, A.-M. Flank, P. Lagarde, J.-P. Gaspard, J. Non-Cryst. Solids 131, 137–138 (1991)Google Scholar
  28. 28.
    N.J. Shevchik, W. Paul, J. Non-Cryst. Solids 13, 1 (1973)Google Scholar
  29. 29.
    R.J. Temkin, Solid State Commun. 15, 1325 (1974)ADSCrossRefGoogle Scholar
  30. 30.
    J.A. Del Cueto, N.J. Shevchik, J. Phys. C 11, L829 (1978)CrossRefGoogle Scholar
  31. 31.
    S.H. Baker, M.I. Manssor, S.J. Gurman, S.C. Bayliss, E.A. Davis, J. Non-Cryst. Solids 144, 63 (1992)Google Scholar
  32. 32.
    M.C. Ridgway, C.J. Glover, G. Foran, K.M. Yu, J. Appl. Phys. 83, 4610 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    C.J. Glover, Ph.D. thesis, Australian National University, 2002Google Scholar
  34. 34.
    O.I. Barkalov, A.I. Kolesnikov, V.E. Antonov, E.G. Ponyatovsky, U. Dahlborg, M. Dahlborg, A. Hannon, Phys. Status Solidi B 198, 491 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    H. Yasuda, K. Furuya, Philos. Mag. A 80, 2355 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    J.H. Dias da Silva, J.I. Cisneros, M.M. Guraya, G. Zampieri, Phys. Rev. B 51, 6272 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    S.M. Kluth, B. Johannessen, P. Kluth, C.J. Glover, G.J. Foran, M.C. Ridgway, Nucl. Instrum. Methods B 238, 264 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    S.M. Kluth, B. Johannessen, P. Kluth, C.J. Glover, G.J. Foran, M.C. Ridgway, Nucl. Instrum. Methods B 242, 640 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    P. Kluth, S.M. Kluth, B. Johannessen, C.J. Glover, G.J. Foran, M.C. Ridgway, J. Appl. Phys. 110, 113528 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    A.V. Sapelkin, S.C. Bayliss, A.G. Lyapin, V.V. Brazhkin, A.J. Dent, Phys. Rev. B 56, 11531 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    B. Cai, D.A. Drabold, Phys. Rev. B 79, 195204 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    S.V. Ovsyannikov, V.V. Shchennikov, A.E. Karkin, A. Polian, O. Briot, S. Ruffenach, B. Gill, M. Moret, Appl. Phys. Lett. 97, 032105 (2010)ADSCrossRefGoogle Scholar
  43. 43.
  44. 44.
    A.-M. Flank, P. Lagarde, D. Udron, S. Fisson, A. Gheorghiu, M.-L. Theye, J. Non-Cryst. Solids 435, 97 (1987)Google Scholar
  45. 45.
    D. Udron, A.-M. Flank, P. Lagarde, D. Raoux, M.-L. Theye, J. Non-Cryst. Solids 150, 361 (1992)Google Scholar
  46. 46.
    S.C. Bayliss, S.H. Baker, J.S. Bates, S.J. Gurman, R. Bradley, E.A. Davis, J. Non-Cryst. Solids 164, 143 (1993)Google Scholar
  47. 47.
    S.H. Baker, S.C. Bayliss, S.J. Gurman, N. Elgun, J.S. Bates, E.A. Davis, J. Phys.: Condens. Matter 5, 519 (1993)Google Scholar
  48. 48.
    S.H. Baker, S.C. Bayliss, S.J. Gurman, N. Elgun, B.T. Williams, E.A. Davis, J. Non-Cryst. Solids 169, 111 (1994)Google Scholar
  49. 49.
    S.H. Baker, S.C. Bayliss, S.J. Gurman, N. Elgun, E.A. Davis, J. Phys.: Condens. Matter 8, 1591 (1996)Google Scholar
  50. 50.
    A. Gheorghiu, M. Ouchene, T. Rappeneau, M.-L. Theye, J. Non-Cryst. Solids 59–60, 621 (1983)Google Scholar
  51. 51.
    C.J. Glover, M.C. Ridgway, K.M. Yu, G.J. Foran, T.W. Lee, Y. Moon, E. Yoon, Appl. Phys. Lett. 74, 1713 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    G.M. de Azevedo, C.J. Glover, M.C. Ridgway, K.M. Yu, G.J. Foran, Phys. Rev. B 68, 115204 (2003)Google Scholar
  53. 53.
    G.M. de Azevedo, C.J. Glover, K.M. Yu, G.J. Foran, M.C. Ridgway, Nucl. Instrum. Methods B 206, 1024 (2003)Google Scholar
  54. 54.
    C.S. Schnohr, P. Kluth, A.P. Byrne, G.J. Foran, M.C. Ridgway, Phys. Rev. B 77, 073204 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    C.S. Schnohr, P. Kluth, L.L. Araujo, D.J. Sprouster, A.P. Byrne, G.J. Foran, M.C. Ridgway, Phys. Rev. B 79, 195203 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    C.S. Schnohr, Ph.D. thesis, Australian National University, 2009Google Scholar
  57. 57.
    R.M. Martin, Phys. Rev. B 1, 4005 (1970)ADSCrossRefGoogle Scholar
  58. 58.
    A.-B. Chen, A. Sher, Phys. Rev. B 32, 3695 (1985)ADSCrossRefGoogle Scholar
  59. 59.
    E.P. O’Reilly, J. Robertson, Phys. Rev. B 34, 8684 (1986)ADSCrossRefGoogle Scholar
  60. 60.
    L. Wang, X. Chen, W. Lu, Y. Huang, J. Zhao, Solid State Commun. 149, 638 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    N.J. Shevchik, Phys. Rev. Lett. 31, 1245 (1973)ADSCrossRefGoogle Scholar
  62. 62.
    M. Wihl, M. Cardona, J. Tauc, J. Non-Cryst. Solids 8–10, 172 (1972)Google Scholar
  63. 63.
    G.M. de Azevedo, M.C. Ridgway, K.M. Yu, C.J. Glover, G.J. Foran, Nucl. Instrum. Methods B 190, 851 (2002)Google Scholar
  64. 64.
    G. Pilard, C. Fery, L. Pacearescu, H. Hoelzemann, S. Knappmann, Jpn. J. Appl. Phys. 48, 03064 (2009)CrossRefGoogle Scholar
  65. 65.
    L. Wang, X.S. Chen, Y. Huang, W. Lu, J.J. Zhao, Phys. B 405, 2481 (2010)Google Scholar
  66. 66.
    J.P. Rino, D.S. Borges, S.C. Costa, J. Non-Cryst. Solids 348, 17 (2004)Google Scholar
  67. 67.
    M. Krbal, A.V. Kolobov, B. Hyot, B. Andre, P. Fons, R.E. Simpson, T. Uruga, H. Tanida, J. Tominaga, J. Appl. Phys. 108, 023506 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Electronic Materials EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations