Magnetic Ions in Group IV Semiconductors

Part of the Springer Series in Optical Sciences book series (SSOS, volume 190)


XAS experiments at the TM K-edge in semiconductors, will be employed as a crucial technique to spread light not only on the mechanisms of the atomic substition, but also to investigate how the semiconductor surrounding the metal is perturbed by the insertion of an extrinsic atomic species. Wherever nominal dilution of Mn is obtained, such investigations put in light the physical constraints that must be considered to describe the electronic problem of the ferromagnetism on-set. Contrarily to the case of the III-V group doped semiconductors the research field is still incomplete and many systems have not been dealt with yet in any details, possibly because of more difficult realization and of a more controversial interpretation.


Molecular Beam Epitaxy Interstitial Site Dilute Magnetic Semiconductor Transition Metal Atom Transition Metal Dopant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Fert, Nobel lecture: origin, development and future of spintronics. Rev. Mod. Phys. 80, 1517 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    T. Kasuya, A. Yanase, Rev. Mod. Phys. 40, 684 (1968)ADSCrossRefGoogle Scholar
  3. 3.
    A. Mauger, C. Gotard, Phys. Rep. 141, 51 (1986)Google Scholar
  4. 4.
    J.M.D. Coey, M. Viret, S. von Molnar, Adv. Phys. 48, 167 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    A. Fert, H. Jaffres, Phys. Rev. B 64, 184420 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    H. Ohno, H. Munekata, T. Penney, S. von Molnar, L.L. Chang, Phys. Rev. Lett. 68, 2664 (1992)Google Scholar
  7. 7.
    H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, Appl. Phys. Lett. 69, 363 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    A. Haury, A. Wasiela, A. Arnoult, J. Cibert, S. Tatarenko, T. Dietl, Y. Merle dAubigny, Phys. Rev. Lett. 79, 511 (1997)Google Scholar
  9. 9.
    T. Jungwirth et al., Phys. Rev. B 72, 165204 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Y.D. Park, A.T. Hanbicki, S.C. Erwin, C.S. Hellberg, J.M. Sullivan, J.E. Mattson, T.F. Ambrose, A. Wilson, G. Spanos, B.T. Jonker, Science 295, 651 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    L. Ottaviano, M. Passacantando, S. Picozzi, A. Continenza, R. Gunnella, A. Verna, G. Bihlmayer, G. Impellizzeri, F. Priolo, Appl. Phys. Lett. 88, 061907 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    J.-S. Kang et al., Phys. Rev. Lett. 94, 147202 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    S. Cho, S. Choi, S.C. Hong, Y. Kim, J.B. Ketterson, B.-J. Kim, Y. C. Kim, J.-H Jung, Phys. Rev. B 66, 033303 (2002)Google Scholar
  14. 14.
    A.P. Li, J. Shen, J.R. Thompson, H.H. Weitering, Appl. Phys. Lett. 86, 152507 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    C. Zeng, Z. Zhang, K. van Benthem, M.F. Chrisholm, H.H. Weitering, Phys. Rev. Lett. 100, 066101 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    M. Jamet et al., Nat. Mater. 5, 653 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    S. Picozzi, M. Lezaic, New J. Phys. 10, 055017 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    V.V. Singh, A.S. Vengurlekar, Transition-metal impurities in semiconductors and the Haldane-Anderson model. Phys. Rev. B 30, 3527 (1984)Google Scholar
  19. 19.
    A. Zunger, U. Lindfelt, Phys. Rev. B 27, 1197 (1983)ADSCrossRefGoogle Scholar
  20. 20.
    H. Weng, J. Dong, Phys. Rev. B 71, 035201 (2005)Google Scholar
  21. 21.
    Y.-S. Kim, H. Kim, Y.-S. Chung, Nanotech (2003), vol 3,, ISBN 0-9728422-2-5
  22. 22.
    T. Dietl, Ferromagnetic semiconductors. Semicond. Sci. Technol. 17, 377 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    K. Sato et al., Rev. Mod. Phys. 82, 1634 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    A. Stroppa, S. Picozzi, A. Continenza, A.J. Freeman, Phys. Rev. B 68, 155203 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    A. Continenza, G. Profeta, S. Picozzi, Phys. Rev. B 73, 035212 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    X. Luo, S.B. Zhang, S.-H. Wei, Phys. Rev. B 70, 033208 (2004)ADSGoogle Scholar
  27. 27.
    R. Goswami, G. Kioseoglou, A.T. Hanbicki, O.M.J. van ’t Erve, B.T. Jonker, G. Spanos, Appl. Phys. Lett. 86, 032509 (2005)Google Scholar
  28. 28.
    J.-P. Ayoub, L. Favre, I. Berbezier, A. Ronda, L. Morresi, N. Pinto, Appl. Phys. Lett. 91, 141920 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    N. Pinto, L. Morresi, M. Ficcadenti, R. Murri, F. D’Orazio, F. Lucari, L. Boarino, G. Amato, Phys. Rev. B 72, 165203 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    M. Passacantando, L. Ottaviano, F. D’Orazio, F. Lucari, M. De Biase, G. Impellizzeri, F. Priolo, Phys. Rev. B 73, 195207 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    V.K. Dixit, B.V. Rodrigues, H.L. Bhat, J. Cryst. Growth 217, 40 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    K. Seshan, Handbook of thin-film deposition processes and techniques. Intel CorporationGoogle Scholar
  33. 33.
    N. Pinto, L. Morresi, R. Gunnella, R. Murri, F. D’Orazio, F. Lucari, S. Santucci, P. Picozzi, M. Passacantando, J. Mater. Sci.: Mater. Electron. 14, 337 (2003)Google Scholar
  34. 34.
    F. D’orazio, F. Lucari, S. Santucci, P. Picozzi, A. Verna, M. Passacantando, N. Pinto. L. Morresi, R. Gunnella, R. Murri, J. Magn. Magn. Mater. 262, 158 (2003)Google Scholar
  35. 35.
    A.M. Nazmul, T. Amemiya, Y. Shuto, S. Sugahara, M. Tanaka, Phys. Rev. Lett. 95, 017201 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    F. Tsui, L. He, L. Ma, A. Tkachuk, Y. Chu, K. Nakajima, T. Chikyow, Phys. Rev. Lett. 91, 177203 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    W. Zhu, Z. Zhang, E. Kaxiras, Phys. Rev. Lett. 100, 027205 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    L. Liu, N. Chen, Z. Yin, F. Yang, J. Zhou, F. Zhang, J. Cryst. Growth 265, 106 (2004)ADSGoogle Scholar
  39. 39.
    A. Verna et al., Phys. Rev. B 74, 085204 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    L. Ottaviano, M. Passacantando, A. Verna, R. Gunnella, E. Principi, A. Di Cicco, G. Impellizzeri, F. Priolo, J. Appl. Phys. 100, 063528 (2006)Google Scholar
  41. 41.
    S. Picozzi, L. Ottaviano, M. Passacantando, G. Profeta, A. Continenza, F. Priolo, M. Kim, A.J. Freeman, Appl. Phys. Lett. 86, 062501 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    A. Wolska, K. Lawniczak-Jablonska, M. Klepka, M.S. Walczak, A. Misiuk, Phys. Rev. B 75, 113201 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    L. Ottaviano, A. Continenza, G. Profeta, G. Impellizzeri, A. Irrera, R. Gunnella, O. Kazakova, Phys. Rev. B 83, 134426 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    L. Ottaviano, A. Verna, V. Grossi, P. Parisse, S. Piperno, M. Passacantando, G. Impellizzeri, F. Priolo, Surf. Sci. 601, 2623 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    S. Zhou, D. Bürger, A. Mücklich, C. Baumgart, W. Skorupa, C. Timm, P. Osterlin, M. Helm, H. Schmidt, Phys. Rev. B 81, 165204 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    T. Kim et al., J. Appl. Phys. 108, 013508 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    L. Ottaviano, M. Passacantando, A. Verna, F. D’Amico, R. Gunnella, Appl. Phys. Lett. 90, 242105 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    R. Gunnella et al., J. Phys.: Condens. Matter 22, 216006 (2010)ADSGoogle Scholar
  49. 49.
    D. Wu, D.J. Keavney, R. Wu, E. Johnston-Halperin, D.D. Awschalom, J. Shi, Phys. Rev. B 71, 153310 (2005)Google Scholar
  50. 50.
    R. Gunnella, N. Pinto, L. Morresi, M. Abbas, A. Di Cicco, J. Non-Cryst. Solids 354, 4193 (2008)Google Scholar
  51. 51.
    R. Gunnella, L. Morresi, N. Pinto, R. Murri, L. Ottaviano, M. Passacantando, F. D’Orazio, F. Lucari, Surf. Sci. 577, 22 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    D. Sebilleau, R. Gunnella, S. Di Matteo, Z.-Y. Wu, C.R. Natoli, J. Phys.: Condens. Matter 18, R175 (2006) and references thereinGoogle Scholar
  53. 53.
    K.M. Yu, W. Walukiewicz, T. Wojtowics, I. Kuryliszyn, X. Liu, Y. Sasaki, J.K. Furdyna, Phys. Rev. B 65, 201303(R) (2002)ADSCrossRefGoogle Scholar
  54. 54.
    A. Mujica, R.J. Needs, Phys. Rev. B 48, 17010 (1993)ADSCrossRefGoogle Scholar
  55. 55.
    M.C. Ridgeway, C.J. Glover, K.M. Yu, G.J. Foran, C. Clerc, J.L. Hansen, A. Nylandsted Larsen, Phys. Rev. B 61, 12586 (2000)Google Scholar
  56. 56.
    A. Filipponi, A. Di Cicco, C. R. Natoli, Phys. Rev. B 52, 15122 (1995) (1996).Google Scholar
  57. 57.
    A. Di Cicco, Phys. Rev. B 53, 6174 (1996)ADSCrossRefGoogle Scholar
  58. 58.
    R. Bacewicz, A. Twarog, A. Malinowska, T. Wojtowicz, X. Liu, J.K. Furdyna, J. Phys. Chem. Solids 66, 2004 (2005)ADSCrossRefGoogle Scholar
  59. 59.
    M. Rovezzi, F. D’Acapito, A. Navarro-Quezada, B. Faina, T. Li, A. Bonanni, F. Filippone, A. Amore Bonapasta, T. Dietl, Phys. Rev. B 79, 195209 (2009)Google Scholar
  60. 60.
    P. Mahadevan, A. Zunger, Phys. Rev. B 68, 075202 (2003)ADSCrossRefGoogle Scholar
  61. 61.
    M. Rovezzi, T. Devillers, E. Arras, F. D’Acapito, A. Barski, M. Jamet, P. Pochet, Appl. Phys. Lett. 92, 242510 (2008)ADSCrossRefGoogle Scholar
  62. 62.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)ADSCrossRefGoogle Scholar
  63. 63.
    L. Ottaviano, Private Communication (2012)Google Scholar
  64. 64.
    Y.L. Soo, J.H. Yao, C.S. Wang, S.L. Chang, C.A. Hsieh, J.F. Lee, T.S. Chin, Phys. Rev. B 81, 104104 (2010)Google Scholar
  65. 65.
    H.S. Hsu, P.Y. Chung, J.H. Zhang, S.J. Sun, H. Chou, H.C. Su, C.H. Lee, J. Chen, J.C.A. Huang, Appl. Phys. Lett. 97, 032503 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    J.A. Colón Santana, R. Skomski, V. Singh, V. Palshin, A. Petukhov, Ya. B. Losovyj, A. Sokolov, P.A. Dowben, I. Ketsman, J. Appl. Phys. 105, 07A930 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Scienze e TecnologieUniversità di CamerinoCamerinoItaly

Personalised recommendations