Advertisement

The Influence of Correlated Objectives on Different Types of P-ACO Algorithms

  • Ruby L. V. Moritz
  • Enrico Reich
  • Matthias Bernt
  • Martin Middendorf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8600)

Abstract

The influence of correlated objectives on different types of P-ACO algorithms for solutions of multi objective optimization problems is investigated. Therefore, a simple method to create multi objective optimization problems with correlated objectives is proposed. Theoretical results show how certain correlations between the objectives can be obtained. The method is applied to the Traveling Salesperson problem. The influence of the correlation type and strength on the optimization behavior of different P-ACO algorithms is analyzed empirically. A particular focus is given on P-ACOs with ranking methods.

Keywords

Pareto Front Knapsack Problem Pareto Optimal Solution Ranking Method Multi Objective Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xu, Y., Qu, R., Li, R.: A simulated annealing based genetic local search algorithm for multi-objective multicast routing problems. Ann. Oper. Res. 206(1), 527–555 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization. European Journal of Operational Research 137(1), 50–71 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Knowles, J.D., Corne, D.: Towards landscape analyses to inform the design of hybrid local search for the multiobjective quadratic assignment problem. HIS 87, 271–279 (2002)Google Scholar
  4. 4.
    Paquete, L., Stützle, T.: A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices. Eur. J. Oper. Res. 169(3), 943–959 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    López-Ibánez, M., Paquete, L., Stützle, T.: Hybrid population-based algorithms for the bi-objective quadratic assignment problem. Journal of Mathematical Modelling and Algorithms 5(1), 111–137 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    López-Ibáñez, M., Paquete, L., Stützle, T.: On the design of ACO for the biobjective quadratic assignment problem. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 214–225. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Garrett, D., Dasgupta, D., Vannucci, J., Simien, J.: Applying hybrid multiobjective evolutionary algorithms to the sailor assignment problem. In: Jain, L.C., Palade, V., Srinivasan, D. (eds.) Advances in Evolutionary Computing for System Design. SCI, vol. 66, pp. 269–301. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: Analyzing the effect of objective correlation on the efficient set of MNK-landscapes. In: Coello Coello, C.A. (ed.) LION 5. LNCS, vol. 6683, pp. 116–130. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: Pareto local optima of multiobjective NK-landscapes with correlated objectives. In: Merz, P., Hao, J.K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 226–237. Springer, Heidelberg (2011)Google Scholar
  10. 10.
    Shi, C., Yu, P., Yan, Z., Huang, Y., Wang, B.: Comparison and selection of objective functions in multiobjective community detection. Computational Intelligence (to appear, 2013)Google Scholar
  11. 11.
    Ishibuchi, H., Akedo, N., Ohyanagi, H., Nojima, Y.: Behavior of EMO algorithms on many-objective optimization problems with correlated objectives. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 1465–1472. IEEE (2011)Google Scholar
  12. 12.
    Ishibuchi, H., Akedo, N., Nojima, Y.: A study on the specification of a scalarizing function in MOEA/D for many-objective knapsack problems. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 231–246. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Ishibuchi, H., Yamane, M., Nojima, Y.: Effects of duplicated objectives in many-objective optimization problems on the search behavior of hypervolume-based evolutionary algorithms. In: 2013 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM), pp. 25–32. IEEE (2013)Google Scholar
  14. 14.
    Brockhoff, D., Saxena, D., Deb, K., Zitzler, E.: On handling a large number of objectives a posteriori and during optimization. Natural Computing Series, pp. 377–403. Springer (2008)Google Scholar
  15. 15.
    Goel, T., Vaidyanathan, R., Haftka, R.T., Shyy, W., Queipo, N.V., Tucker, K.: Response surface approximation of pareto optimal front in multi-objective optimization. Comput. Method. Appl. M. 196(4), 879–893 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Murata, T., Taki, A.: Examination of the performance of objective reduction using correlation-based weighted-sum for many objective knapsack problems. In: 10th International Conference on Hybrid Intelligent Systems (HIS), pp. 175–180. IEEE (2010)Google Scholar
  17. 17.
    Guntsch, M., Middendorf, M.: A population based approach for ACO. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoWorkshops 2002. LNCS, vol. 2279, pp. 72–81. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Knowles, J., Corne, D.: Instance generators and test suites for the multiobjective quadratic assignment problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 295–310. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Liefooghe, A., Paquete, L., Simões, M., Figueira, J.R.: Connectedness and local search for bicriteria knapsack problems. In: Merz, P., Hao, J.K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 48–59. Springer, Heidelberg (2011)Google Scholar
  20. 20.
    Corne, D., Knowles, J.: Techniques for highly multiobjective optimisation: some nondominated points are better than others. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 773–780. ACM (2007)Google Scholar
  21. 21.
    Ishibuchi, H., Tsukamoto, N., Hitotsuyanagi, Y., Nojima, Y.: Effectiveness of scalability improvement attempts on the performance of NSGA-II for many-objective problems. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 649–656. ACM (2008)Google Scholar
  22. 22.
    Lopez Jaimes, A., Santa Quintero, L., Coello Coello, C.A.: Study of preference relations in many-objective optimization. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 611–618. ACM (2009)Google Scholar
  23. 23.
    Lopez Jaimes, A., Coello Coello, C.A.: Study of preference relations in many-objective optimization. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 611–618. ACM (2009)Google Scholar
  24. 24.
    Moritz, R., Reich, E., Schwarz, M., Bernt, M., Middendorf, M.: Refined ranking relations for multi objective optimization and application to P-ACO. In: Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference, pp. 65–72. ACM (2013)Google Scholar
  25. 25.
    Drechsler, N., Drechsler, R., Becker, B.: Multi-objective optimisation based on relation favour. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 154–166. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Garza-Fabre, M., Toscano Pulido, G., Coello Coello, C.A.: Ranking methods for many-objective optimization. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds.) MICAI 2009. LNCS, vol. 5845, pp. 633–645. Springer, Heidelberg (2009)Google Scholar
  27. 27.
    Garza Fabre, M., Toscano Pulido, G., Coello Coello, C.A.: Alternative fitness assignment methods for many-objective optimization problems. In: Collet, P., Monmarché, N., Legrand, P., Schoenauer, M., Lutton, E. (eds.) EA 2009. LNCS, vol. 5975, pp. 146–157. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Angus, D.: Crowding population-based ant colony optimisation for the multi-objective travelling salesman problem. In: IEEE Symposium on Computational Intelligence in Multicriteria Decision Making, pp. 333–340. IEEE (2007)Google Scholar
  29. 29.
    Guntsch, M., Middendorf, M.: Solving multi-criteria optimization problems with population-based ACO. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 464–478. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. 30.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ruby L. V. Moritz
    • 1
  • Enrico Reich
    • 1
  • Matthias Bernt
    • 1
  • Martin Middendorf
    • 1
  1. 1.Parallel Computing and Complex Systems Group, Institute of Computer ScienceUniversity of LeipzigGermany

Personalised recommendations