A Parametric Framework for Cooperative Parallel Local Search

  • Danny Munera
  • Daniel Diaz
  • Salvador Abreu
  • Philippe Codognet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8600)


In this paper we address the problem of parallelizing local search. We propose a general framework where different local search engines cooperate (through communication) in the quest for a solution. Several parameters allow the user to instantiate and customize the framework, like the degree of intensification and diversification. We implemented a prototype in the X10 programming language based on the adaptive search method. We decided to use X10 in order to benefit from its ease of use and the architectural independence from parallel resources which it offers. Initial experiments prove the approach to be successful, as it outperforms previous systems as the number of processes increases.


Search Space Local Search Constraint Satisfaction Problem Explorer Node Local Search Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbelaez, A., Codognet, P.: Massively Parallel Local Search for SAT. In: 2012 IEEE 24th International Conference on Tools with Artificial Intelligence (ICTAI), Athens, pp. 57–64. IEEE (November 2012)Google Scholar
  2. 2.
    Caniou, Y., Codognet, P., Diaz, D., Abreu, S.: Experiments in Parallel Constraint-Based Local Search. In: Hao, J.-K., Merz, P. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 96–107. Springer, Heidelberg (2011)Google Scholar
  3. 3.
    Codognet, P., Díaz, D.: Yet another local search method for constraint solving. In: Steinhöfel, K. (ed.) SAGA 2001. LNCS, vol. 2264, pp. 73–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Codognet, P., Diaz, D.: An Efficient Library for Solving CSP with Local Search. In: 5th International Conference on Metaheuristics, Kyoto, Japan, pp. 1–6 (2003)Google Scholar
  5. 5.
    Cortes, O.A.C., da Silva, J.C.: A Local Search Algorithm Based on Clonal Selection and Genetic Mutation for Global Optimization. In: 2010 Eleventh Brazilian Symposium on Neural Networks, pp. 241–246. IEEE (2010)Google Scholar
  6. 6.
    Crainic, T.G., Gendreau, M., Hansen, P., Mladenovic, N.: Cooperative parallel variable neighborhood search for the p-median. Journal of Heuristics 10(3), 293–314 (2004)CrossRefGoogle Scholar
  7. 7.
    Diaz, D., Abreu, S., Codognet, P.: Targeting the Cell Broadband Engine for constraint-based local search. Concurrency and Computation: Practice and Experience (CCP&E) 24(6), 647–660 (2011)CrossRefGoogle Scholar
  8. 8.
    Diaz, D., Richoux, F., Caniou, Y., Codognet, P., Abreu, S.: Parallel Local Search for the Costas Array Problem. In: Parallel Computing and Optimization, PCO 2012, Shanghai, China. IEEE (May 2012)Google Scholar
  9. 9.
    Gent, I.P., Walsh, T.: CSPLib: a benchmark library for constraints. Technical report (1999)Google Scholar
  10. 10.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers (July 1997)Google Scholar
  11. 11.
    Glover, F., Laguna, M., Martí, R.: Fundamentals of Scatter Search and Path Relinking. Control and Cybernetics 29(3), 653–684 (2000)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Gonzalez, T. (ed.): Handbook of Approximation Algorithms and Metaheuristics. Chapman and Hall / CRC (2007)Google Scholar
  13. 13.
    Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann / Elsevier (2004)Google Scholar
  14. 14.
    Kadioglu, S., Sellmann, M.: Dialectic Search. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 486–500. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Machado, R., Abreu, S., Diaz, D.: Parallel local search: Experiments with a pgas-based programming model. CoRR, abs/1301.7699 (2013), Proceedings of PADL 2013, Rome, ItalyGoogle Scholar
  16. 16.
    Machado, R., Abreu, S., Diaz, D.: Parallel Performance of Declarative Programming Using a PGAS Model ((forthcoming)). In: Sagonas, K. (ed.) PADL 2013. LNCS, vol. 7752, pp. 244–260. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Munera, D., Diaz, D., Abreu, S.: Towards Parallel Constraint-Based Local Search with the X10 Language. In: 20th International Conference on Applications of Declarative Programming and Knowledge Management (INAP), Kiel, Germany (2013)Google Scholar
  18. 18.
    Pascal, V.H., Laurent, M.: Constraint-Based Local Search. The MIT Press (2005)Google Scholar
  19. 19.
    Saraswat, V., Almasi, G., Bikshandi, G., Cascaval, C., Cunningham, D., Grove, D., Kodali, S., Peshansky, I., Tardieu, O.: The Asynchronous Partitioned Global Address Space Model. In: The First Workshop on Advances in Message Passing, Toronto, Canada, pp. 1–8 (2010)Google Scholar
  20. 20.
    Saraswat, V., Bloom, B., Peshansky, I., Tardieu, O., Grove, D.: X10 language specification - Version 2.3. Technical report (2012)Google Scholar
  21. 21.
    Schulte, C., Tack, G., Lagerkvist, M.: Modeling and Programming with Gecode (2013)Google Scholar
  22. 22.
    Toulouse, M., Crainic, T., Gendreau, M.: Communication Issues in Designing Cooperative Multi-Thread Parallel Searches. In: Meta-Heuristics: Theory & Applications, pp. 501–522. Kluwer Academic Publishers, Norwell (1995)Google Scholar
  23. 23.
    Truchet, C., Richoux, F., Codognet, P.: Prediction of parallel speed-ups for las vegas algorithms. In: 43rd International Conference on Parallel Processing, ICPP 2013. IEEE Press (October 2013)Google Scholar
  24. 24.
    Verhoeven, M.G.A., Aarts, E.H.L.: Parallel local search. Journal of Heuristics 1(1), 43–65 (1995)CrossRefzbMATHGoogle Scholar
  25. 25.
    Zhang, Q., Sun, J.: Iterated Local Search with Guided Mutation. In: IEEE International Conference on Evolutionary Computation, pp. 924–929. IEEE (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Danny Munera
    • 1
  • Daniel Diaz
    • 1
  • Salvador Abreu
    • 2
  • Philippe Codognet
    • 3
  1. 1.University of Paris 1-SorbonneFrance
  2. 2.Universidade de Évora and CENTRIAPortugal
  3. 3.JFLI-CNRS / UPMCUniversity of TokyoJapan

Personalised recommendations