Skip to main content

Global Optimization of Multimodal Deceptive Functions

  • Conference paper
  • 1373 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8600))

Abstract

Local search algorithms operating in high-dimensional and multimodal search spaces often suffer from getting trapped in a local optima, therefore requiring many restarts. Even with multiple restarts, their search efficiency critically depends on the choice of the neighborhood structure. In this paper we propose an approach in which the need for the restarts is exploited to improve the neighborhood definitions. Namely, a graph clustering based linkage detection method is used to mine the information from several runs, in order to extract variable dependencies and update the neighborhood structure, variation operators accordingly. We show that the adaptive neighborhood structure approach enables the efficient solving of challenging global optimization problems that are both deceptive and multimodal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pelikan, M.: Hierarchical Bayesian optimization algorithm: Toward a new generation of evolutionary algorithms. Springer (2005)

    Google Scholar 

  2. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, Norwell (2002)

    Book  Google Scholar 

  3. Goldberg, D.E., Deb, K., Kargupta, H., Harik, G.: Rapid, accurate optimization of difficult problems using fast messy genetic algorithms. In: Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, CA, pp. 56–64. Morgan Kaufman (1993)

    Google Scholar 

  4. Harik, G.R., Goldberg, D.E.: Learning linkage. In: Belew, R.K., Vose, M.D. (eds.) FOGA, pp. 247–262. Morgan Kaufmann (1996)

    Google Scholar 

  5. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE-EC 3(4), 287 (1999)

    Google Scholar 

  6. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian optimization algorithm. In: Banzhaf, W., et al. (eds.) GECCO 1999, Orlando, FL, July 13-17, vol. I, pp. 525–532. Morgan Kaufmann Publishers, San Fransisco (1999)

    Google Scholar 

  7. Watson, R.A., Pollack, J.: A computational model of symbiotic composition in evolutionary transitions. Biosystems 69(2-3), 187–209 (2003), Special Issue on Evolvability, ed. Nehaniv

    Google Scholar 

  8. de Jong, E.D.: Representation Development from Pareto-Coevolution. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 262–273. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Toussaint, M.: Compact Genetic Codes as a Search Strategy of Evolutionary Processes. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 75–94. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. de Jong, E.D., Thierens, D., Watson, R.A.: Hierarchical genetic algorithms. In: Yao, X., et al. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 232–241. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Pelikan, M., Goldberg, D.E.: Escaping hierarchical traps with competent genetic algorithms. In: Spector, L., et al. (eds.) GECCO 2001, July 7-11, pp. 511–518. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  12. Yu, T.L., Goldberg, D.E.: Conquering hierarchical difficulty by explicit chunking: substructural chromosome compression. In: GECCO 2006, pp. 1385–1392. ACM Press, NY (2006)

    Google Scholar 

  13. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, U. of Utrecht (2000)

    Google Scholar 

  15. Brohée, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7, 488 (2006)

    Article  Google Scholar 

  16. Iclănzan, D., Dumitrescu, D.: Graph clustering based model building. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 506–515. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms 2, San Mateo, pp. 93–108. Morgan Kaufmann (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iclănzan, D. (2014). Global Optimization of Multimodal Deceptive Functions. In: Blum, C., Ochoa, G. (eds) Evolutionary Computation in Combinatorial Optimisation. EvoCOP 2014. Lecture Notes in Computer Science, vol 8600. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44320-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44320-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44319-4

  • Online ISBN: 978-3-662-44320-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics