A Multi-dimensional Genetic Programming Approach for Multi-class Classification Problems

  • Vijay Ingalalli
  • Sara Silva
  • Mauro Castelli
  • Leonardo Vanneschi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8599)


Classification problems are of profound interest for the machine learning community as well as to an array of application fields. However, multi-class classification problems can be very complex, in particular when the number of classes is high. Although very successful in so many applications, GP was never regarded as a good method to perform multi-class classification. In this work, we present a novel algorithm for tree based GP, that incorporates some ideas on the representation of the solution space in higher dimensions. This idea lays some foundations on addressing multi-class classification problems using GP, which may lead to further research in this direction. We test the new approach on a large set of benchmark problems from several different sources, and observe its competitiveness against the most successful state-of-the-art classifiers.


Random Forest Genetic Programming Mahalanobis Distance Parse Tree Percentage Accuracy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koza, J.R.: Genetic Programming: On the programming of computers by means of natural selection, vol. 1. MIT Press (1992)Google Scholar
  2. 2.
    Poli, R., Langdon, W.B., Mcphee, N.F.: A field guide to genetic programming (March 2008)Google Scholar
  3. 3.
    Langdon, W., Poli, R.: Foundations of Genetic Programming. Springer (2002)Google Scholar
  4. 4.
    Special issue on bridging the gap between theory and practice in evolutionary algorithms research. Evolutionary Computation 15(4) (2007)Google Scholar
  5. 5.
    Castelli, M., Silva, S., Vanneschi, L., Cabral, A., Vasconcelos, M.J., Catarino, L., Carreiras, J.M.B.: Land cover/Land use multiclass classification using GP with geometric semantic operators. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 334–343. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Muni, D., Pal, N., Das, J.: A novel approach to design classifiers using genetic programming. IEEE Transactions on Evolutionary Computation 8(2), 183–196 (2004)CrossRefGoogle Scholar
  7. 7.
    Zhang, M., Ciesielski, V.: Genetic programming for multiple class object detection. In: Foo, N.Y. (ed.) AI 1999. LNCS (LNAI), vol. 1747, pp. 180–192. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Zhang, M., Smart, W.: Multiclass object classification using genetic programming. In: Raidl, G.R., et al. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 369–378. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Espejo, P., Ventura, S., Herrera, F.: A survey on the application of genetic programming to classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 40(2), 121–144 (2010)CrossRefGoogle Scholar
  10. 10.
    Bojarczuk, C.C., Lopes, H.S., Freitas, A.A.: Genetic programming for knowledge discovery in chest-pain diagnosis. IEEE Engineering in Medicine and Biology Magazine 19(4), 38–44 (2000)CrossRefGoogle Scholar
  11. 11.
    Sakprasat, S., Sinclair, M.: Classification rule mining for automatic credit approval using genetic programming. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 548–555 (2007)Google Scholar
  12. 12.
    Shen, S., Sandham, W., Granat, M., Dempsey, M.F., Patterson, J.: A new approach to brain tumour diagnosis using fuzzy logic based genetic programming. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 870–873 (2003)Google Scholar
  13. 13.
    Falco, I.D., Cioppa, A.D., Tarantino, E.: Discovering interesting classification rules with genetic programming. Applied Soft Computing 1(4), 257–269 (2002)CrossRefGoogle Scholar
  14. 14.
    Tan, K.C., Tay, A., Lee, T., Heng, C.M.: Mining multiple comprehensible classification rules using genetic programming. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 2, pp. 1302–1307 (2002)Google Scholar
  15. 15.
    Tackett, W.A.: Genetic programming for feature discovery and image discrimination. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 303–311. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  16. 16.
    Li, X.M., Wang, M., Cui, L.J., Huang, D.M.: A new classification arithmetic for multi-image classification in genetic programming. In: 2007 International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1683–1687 (2007)Google Scholar
  17. 17.
    Kishore, J.K., Patnaik, L., Mani, V., Agrawal, V.K.: Application of genetic programming for multicategory pattern classification. IEEE Transactions on Evolutionary Computation 4(3), 242–258 (2000)CrossRefGoogle Scholar
  18. 18.
    Silva, S., Tseng, Y.-T.: Classification of seafloor habitats using genetic programming. In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 315–324. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Lin, J.Y., Ke, H.R., Chien, B.C., Yang, W.P.: Classifier design with feature selection and feature extraction using layered genetic programming. Expert Systems With Applications 34(2), 1384–1393 (2008)CrossRefGoogle Scholar
  20. 20.
    Teredesai, A., Govindaraju, V.: Issues in evolving gp based classifiers for a pattern recognition task. In: Congress on Evolutionary Computation, CEC 2004, vol. 1, pp. 509–515 (2004)Google Scholar
  21. 21.
    Winkler, S., Affenzeller, M., Wagner, S.: Advanced genetic programming based machine learning. Journal of Mathematical Modelling and Algorithms 6(3), 455–480 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Jabeen, H., Baig, A.R.: Two-stage learning for multi-class classification using genetic programming. Neurocomputing 116, 311–316 (2013)CrossRefGoogle Scholar
  23. 23.
    Alcala-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., Garcia, S., Sanchez, L., Herrera, F.: Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. Journal of Multiple-Valued Logic and Soft Computing 17(2-3), 255–287 (2011)Google Scholar
  24. 24.
    Bache, K., Lichman, M.: (uci) machine learning repository, university of California, Irvine, school of information and computer sciences (2013),
  25. 25.
    U.S. geological survey (usgs) earth resources observation systems (eros) data center (edc),
  26. 26.
    Silva, S., Almeida, J.: GPLAB - A Genetic Programming Toolbox for MATLAB. In: Proc. of the Nordic MATLAB Conference, NMC 2003, pp. 273–278 (2005)Google Scholar
  27. 27.
    Xiang, S., Nie, F., Zhang, C.: Learning a mahalanobis distance metric for data clustering and classification. Pattern Recognition 41(2), 3600–3612 (2008)CrossRefzbMATHGoogle Scholar
  28. 28.
    Hsu, C.W., Lin, C.J.: A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Vijay Ingalalli
    • 1
    • 2
    • 3
  • Sara Silva
    • 1
    • 4
    • 5
  • Mauro Castelli
    • 6
  • Leonardo Vanneschi
    • 6
  1. 1.INESC-IDLisbonPortugal
  2. 2.LIRMMMontpellierFrance
  3. 3.IRSTEAMontpellierFrance
  4. 4.LabMAg, FCULUniversity of LisbonLisbonPortugal
  5. 5.CISUCUniversidade de CoimbraCoimbraPortugal
  6. 6.ISEGIUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations