On Evolution of Multi-category Pattern Classifiers Suitable for Embedded Systems

  • Zdenek Vasicek
  • Michal Bidlo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8599)


This paper addresses the problem of evolutionary design of classifiers for the recognition of handwritten digit symbols by means of Cartesian Genetic Programming. Two different design scenarios are investigated – the design of multiple-output classifier, and design of multiple binary classifiers. The goal is to evolve classification algorithms that employ substantially smaller amount of operations in contrast with conventional approaches such as Support Vector Machines. Even if the evolved classifiers do not reach the accuracy of the tuned SVM classifier, it will be shown that the accuracy is higher than 93% and the number of required operations is a magnitude lower.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duan, K.-B., Keerthi, S.S.: Which is the best multiclass SVM method? An empirical study. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds.) MCS 2005. LNCS, vol. 3541, pp. 278–285. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)zbMATHGoogle Scholar
  3. 3.
    Völk, K., Miller, J.F., Smith, S.L.: Multiple network CGP for the classification of mammograms. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 405–413. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Sekanina, L., Harding, L.S., Banzhaf, W., Kowaliw, T.: Image Processing and CGP. Natural Computing Series, pp. 181–215. Springer (2011)Google Scholar
  5. 5.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. of the IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  6. 6.
    Vasicek, Z., Bidlo, M., Sekanina, L., Glette, K.: Evolutionary design of efficient and robust switching image filters. In: Proc. of the 2011 NASA/ESA Conference on Adaptive Hardware and Systems, pp. 192–199. IEEE Computer Society (2011)Google Scholar
  7. 7.
    Jin, W., Bin-bin, T., Chang-hao, P., Gai-hui, L.: Statistical method-based evolvable character recognition system. In: IEEE International Symposium on Industrial Electronics, pp. 804–808 (2009)Google Scholar
  8. 8.
    Rehman, A., Khan, G.M.: Polymorphic circuit design for speedy handwritten character recognition using cartesian genetic programming. In: Proc. of the 2011 Frontiers of Information Technology, pp. 79–84. IEEE Computer Society, Washington, DC (2011)CrossRefGoogle Scholar
  9. 9.
    Miller, J.F.: Cartesian Genetic Programming. Springer (2011)Google Scholar
  10. 10.
    LeCun, Y., Cortes, C., Burges, C.J.C.: The MNIST database,
  11. 11.
    Vašíček, Z., Slaný, K.: Efficient phenotype evaluation in cartesian genetic programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 266–278. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zdenek Vasicek
    • 1
  • Michal Bidlo
    • 1
  1. 1.Faculty of Information Technology, IT4Innovations Centre of ExcellenceBrno University of TechnologyBrnoCzech Republic

Personalised recommendations