Exploring the Search Space of Hardware / Software Embedded Systems by Means of GP

  • Milos Minarik
  • Lukáš Sekanina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8599)


This paper presents a new platform for development of small application-specific digital embedded architectures based on a data path controlled by a microprogram. Linear genetic programming is extended to evolve a program for the controller together with suitable hardware architecture. Experimental results show that the platform can automatically design general solutions as well as highly optimized specialized solutions to benchmark problems such as maximum, parity or iterative division.


Input Module Multiobjective Genetic Algorithm Linear Genetic Programming Cartesian Genetic Programming Hardware Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Minarik, M., Sekanina, L.: Concurrent evolution of hardware and software for application-specific microprogrammed systems. In: International Conference on Evolvable Systems (ICES), IEEE Computational Intelligence, pp. 43–50 (April 2013)Google Scholar
  2. 2.
    Dick, R.P., Jha, N.K.: Mogac: a multiobjective genetic algorithm for hardware-software cosynthesis of distributed embedded systems. IEEE Trans. on CAD of Integrated Circuits and Systems 17(10), 920–935 (1998)CrossRefGoogle Scholar
  3. 3.
    Shang, L., Dick, R.P., Jha, N.K.: Slopes: Hardware-software cosynthesis of low-power real-time distributed embedded systems with dynamically reconfigurable fpgas. IEEE Trans. on CAD of Integrated Circuits and Systems 26(3), 508–526 (2007)CrossRefGoogle Scholar
  4. 4.
    Deniziak, S., Gorski, A.: Hardware/Software co-synthesis of distributed embedded systems using genetic programming. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds.) ICES 2008. LNCS, vol. 5216, pp. 83–93. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Tempesti, G., Mudry, P.A., Zufferey, G.: Hardware/software coevolution of genome programs and cellular processors. In: First NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2006), pp. 129–136. IEEE Computer Society (2006)Google Scholar
  6. 6.
    Cheang, S.M., Leung, K.S., Lee, K.H.: Genetic parallel programming: design and implementation. Evol. Comput. 14(2), 129–156 (2006)CrossRefGoogle Scholar
  7. 7.
    Goldberg, D.E., Lingle, R.: Alleles, loci, and the traveling salesman problem. In: Proc. of the International Conference on Genetic Algorithms and Their Applications, pp. 154–159. Lawrence Erlbaum Associates, Publishers, Pittsburgh (1985)Google Scholar
  8. 8.
    Üçoluk, G.: Genetic algorithm solution of the tsp avoiding special crossover and mutation. Intelligent Automation & Soft Computing 8(3), 265–272 (2002)CrossRefGoogle Scholar
  9. 9.
    Brameier, M., Banzhaf, W.: Linear Genetic Programming. Springer, Berlin (2007)zbMATHGoogle Scholar
  10. 10.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  11. 11.
    Minarik, M., Sekanina, L.: Evolution of iterative formulas using cartesian genetic programming. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part I. LNCS, vol. 6881, pp. 11–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Milos Minarik
    • 1
  • Lukáš Sekanina
    • 1
  1. 1.Faculty of Information Technology, IT4Innovations Centre of ExcellenceBrno University of TechnologyBrnoCzech Republic

Personalised recommendations