Epigenetic Control of Genome Expression

  • Jean-Louis Guénet
  • Fernando Benavides
  • Jean-Jacques Panthier
  • Xavier Montagutelli


From the standpoint of evolution, diploidy is generally considered advantageous for two reasons. First, because diploid organisms possess twice as many genes as haploids and in these conditions twice as many favorable mutations arise per generation. This of course increases the genetic diversity in the population and, finally, contributes to the progress of adaptive evolution. Diploidy is also considered advantageous because, when a recessive mutation occurs in a given gene, there is always a backup copy of the original allele on the other chromosome, offering a chance for the population to assess, with no risk, which one of the two alleles is most advantageous for the future of the species in a given environmental context. In most cases, the new mutant allele is neutral and has no selective advantage; sometimes it is harmful and is more or less rapidly eliminated. On rare occasions, it is beneficial and can then gradually replace the original allele.


Long Terminal Repeat Imprint Gene Coat Color Robertsonian Translocation Uniparental Disomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Augui S, Nora EP, Heard E (2011) Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet 12:429–442PubMedCrossRefGoogle Scholar
  2. Barlow DP, Stöger R, Herrmann BG, Saito K, Schweifer N (1991) The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349:84–87PubMedCrossRefGoogle Scholar
  3. Barton SC, Surani MAH, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311:374–376PubMedCrossRefGoogle Scholar
  4. Beutler E, Yeh M, Fairbanks VF (1962) The normal human female as a mosaic of X-chromosome activity: studies using the gene for G-6-PD deficiency as a marker. Proc Natl Acad Sci USA 48:9–16PubMedCentralPubMedCrossRefGoogle Scholar
  5. Blewitt ME, Vickaryous NK, Paldi A, Koseki H, Whitelaw E (2006) Dynamic reprogramming of DNA methylation at an epigenetically sensitive allele in mice. PLoS Genet 2(4):e49PubMedCentralPubMedCrossRefGoogle Scholar
  6. Brown SD (1991) XIST and the mapping of the X chromosome inactivation centre. BioEssays 13:607–612PubMedCrossRefGoogle Scholar
  7. Butler MG (2009) Genomic imprinting disorders in humans: a mini-review. J Assist Reprod Genet 26:477–486PubMedCentralPubMedCrossRefGoogle Scholar
  8. Cattanach BM (1986) Parental origin effects in mice. J Embryol Exp Morphol 97(Suppl):137–150PubMedGoogle Scholar
  9. Cattanach BM, Kirk M (1985) Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315:496–498PubMedCrossRefGoogle Scholar
  10. Chen T, Dent SY (2014) Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet 15:93–106PubMedCentralPubMedCrossRefGoogle Scholar
  11. Constância M, Pickard B, Kelsey G, Reik W (1998) Imprinting mechanisms. Genome Res 8:881–900PubMedGoogle Scholar
  12. Cropley JE, Dang TH, Martin DI, Suter CM (2012) The penetrance of an epigenetic trait in mice is progressively yet reversibly increased by selection and environment. Proc Biol Sci B 279:2347–2353CrossRefGoogle Scholar
  13. Davidson RG, Nitowsky HM, Childs B (1963) Demonstration of two populations of cells in the human female heterozygous for glucose-6-phosphate dehydrogenase variants. Proc Nat Acad Sci USA 50:481–485PubMedCentralPubMedCrossRefGoogle Scholar
  14. DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859PubMedCrossRefGoogle Scholar
  15. Dünzinger U, Nanda I, Schmid M, Haaf T, Zechner U (2005) Chicken orthologues of mammalian imprinted genes are clustered on macrochromosomes and replicate asynchronously. Trends Genet 21:488–492PubMedCrossRefGoogle Scholar
  16. Espinós C, Lorenzo JI, Casaña P, Martínez F, Aznar JA (2000) Haemophilia B in a female caused by skewed inactivation of the normal X-chromosome. Haematologica 85:1092–1095PubMedGoogle Scholar
  17. Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12:565–575PubMedCrossRefGoogle Scholar
  18. Ferguson-Smith AC, Sasaki H, Cattanach BM, Surani MA (1993) Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362:751–755PubMedCrossRefGoogle Scholar
  19. Gabory A, Ripoche MA, Le Digarcher A, Watrin F, Ziyyat A, Forné T, Jammes H, Ainscough JF, Surani MA, Journot L, Dandolo L (2009) H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development 136:3413–3421Google Scholar
  20. Garrick D, Sharpe JA, Arkell R, Dobbie L, Smith AJH et al (2006) Loss of Atrx affects trophoblast development and the pattern of X-inactivation in extraembryonic tissues. PLoS Genet 2(4):e58PubMedCentralPubMedCrossRefGoogle Scholar
  21. Georges M, Charlier C, Cockett N (2013) The callipyge locus: evidence for the trans interaction of reciprocally imprinted genes. Trends Genetics (in press)Google Scholar
  22. Haig D (1997) Parental antagonism, relatedness asymmetries, and genomic imprinting. Proc Roy Soc Lond Ser B-Biol Sci 264:1657–1662CrossRefGoogle Scholar
  23. Horsthemke B, Wagstaff J (2008) Mechanisms of imprinting of the Prader-Willi/Angelman region. Am J Med Genet A 146:2041–2052CrossRefGoogle Scholar
  24. Johnson DR (1974a) Further observations on the haipin-tail (T hp) mutation in the mouse. Genet Res 24:207–213PubMedCrossRefGoogle Scholar
  25. Johnson DR (1974b) Hairpin-tail: a case of post-reductional gene action in the mouse egg. Genetics 76:795–805PubMedCentralPubMedGoogle Scholar
  26. Kawahara M, Kono T (2012) Roles of genes regulated by two paternally methylated imprinted regions on chromosomes 7 and 12 in mouse ontogeny. J Reprod Dev 58:175–179PubMedCrossRefGoogle Scholar
  27. Kawahara M, Wu Q, Takahashi N, Morita S, Yamada K, Ito M, Ferguson-Smith AC, Kono T (2007) High-frequency generation of viable mice from engineered bi-maternal embryos. Nat Biotechnol 25:1045–1050PubMedCrossRefGoogle Scholar
  28. Kelly WG, Schaner CE, Demburg AF, Lee MH, Kim SK, Villeneuve AM, Reinke V (2002) X-chromosome silencing in the germline of C. elegans. Development 129:479–492PubMedCentralPubMedGoogle Scholar
  29. Keverne EB (2013) Importance of the matriline for genomic imprinting, brain development and behaviour. Philos Trans R Soc Lond B Biol Sci 368:20110327. doi: 10.1098/rstb.2011.0327 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, Park ES, Seo JS, Ogawa H (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature 428:860–864PubMedCrossRefGoogle Scholar
  31. Larschan E, Bishop EP, Kharchenko PV, Core LJ, Lis JT, Park PJ, Kuroda MI (2011) X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature 471:115–118PubMedCentralPubMedCrossRefGoogle Scholar
  32. Latos PA, Pauler FM, Koerner MV, Şenergin HB, Hudson QJ, Stocsits RR, Allhoff W, Stricker SH, Klement RM, Warczok KE, Aumayr K, Pasierbek P, Barlow DP (2012) Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338:1469–1472PubMedCrossRefGoogle Scholar
  33. Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365PubMedCrossRefGoogle Scholar
  34. Lubinsky M, Herrmann J, Kosseff A, Opitz JM (1974) Autosomal-dominant sex-dependent transmission of the Beckwith-Wiedemann syndrome. Lancet 1:932PubMedCrossRefGoogle Scholar
  35. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373PubMedCrossRefGoogle Scholar
  36. Lyon MF (2002) A Personal History of the Mouse Genome. Annu Rev Genomics Hum Genet 3:1–16PubMedCrossRefGoogle Scholar
  37. Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R (1997) Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11:156–166PubMedCrossRefGoogle Scholar
  38. McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183PubMedCrossRefGoogle Scholar
  39. Mohammad F, Pandey GK, Mondal T, Enroth S, Redrup L, Gyllensten U, Kanduri C (2012) Long noncoding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development 139:2792–2803PubMedCrossRefGoogle Scholar
  40. Moncla A, Malzac P, Livet MO, Voelckel MA, Mancini J, Delaroziere JC, Philip N, Mattei JF (1999) Angelman syndrome resulting from UBE3A mutations in 14 patients from eight families: clinical manifestations and genetic counseling. J Med Genet 36:554–560PubMedCentralPubMedGoogle Scholar
  41. Morey C, Avner P (2011) The demoiselle of X-inactivation: 50 years old and as trendy and mesmerising as ever. PLoS Genet 7:e1002212PubMedCentralPubMedCrossRefGoogle Scholar
  42. Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318PubMedCrossRefGoogle Scholar
  43. Morison IM, Paton CJ, Cleverley SD (2001) The imprinted gene and parent-of-origin effect database. Nucleic Acids Res 29:275–276PubMedCentralPubMedCrossRefGoogle Scholar
  44. Morison IM, Ramsay JP, Spencer HG (2005) A census of mammalian imprinting. Trends Genet 21:457–465PubMedCrossRefGoogle Scholar
  45. Nowack MK, Shirzadi R, Dissmeyer N, Dolf A, Endl E, Grini PE, Schnittger A (2007) By-passing genomic imprinting allows seed development. Nature 447:312–315PubMedCrossRefGoogle Scholar
  46. Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:644–649PubMedCrossRefGoogle Scholar
  47. Patrat C, Okamoto I, Diabangouaya P, Vialon V, Le Baccon P, Chow J, Heard E (2009) Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice. Proc Natl Acad Sci USA 106:5198–5203PubMedCentralPubMedCrossRefGoogle Scholar
  48. Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N (1996) Requirement for Xist in X chromosome inactivation. Nature 379:131–137PubMedCrossRefGoogle Scholar
  49. Pollex T, Heard E (2012) Recent advances in X-chromosome inactivation research. Curr Opin Cell Biol.
  50. Proudhon C, Duffié R, Ajjan S, Cowley M, Iranzo J, Carbajosa G, Saadeh H, Holland ML, Oakey RJ, Rakyan VK, Schulz R, Bourc’his D (2012) Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes. Mol Cell 47:909–920PubMedCentralPubMedCrossRefGoogle Scholar
  51. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093PubMedCrossRefGoogle Scholar
  52. Reik W, Walter J (2001) Evolution of imprinting mechanisms: the battle of the sexes begins in the zygote. Nat Genet 27:255–256PubMedCrossRefGoogle Scholar
  53. Saxena A, Carninci P (2011) Whole transcriptome analysis: what are we still missing? Wiley Interdiscip Rev Syst Biol Med 3:527–543PubMedCrossRefGoogle Scholar
  54. Sha K (2008) A mechanistic view of genomic imprinting. Annu Rev Genomics Hum Genet 9:197–216PubMedCrossRefGoogle Scholar
  55. Simmler MC, Cattanach BM, Rasberry C, Rougeulle C, Avner P (1993) Mapping the murine Xce locus with (CA)n repeats. Mamm Genome 4:523–530PubMedCrossRefGoogle Scholar
  56. Surani MAH, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550PubMedCrossRefGoogle Scholar
  57. Thorvaldsen JL, Krapp C, Willard HF, Bartolomei MS (2012) Nonrandom X chromosome inactivation is influenced by multiple regions on the murine x chromosome. Genetics 192:1095–1107PubMedCentralPubMedCrossRefGoogle Scholar
  58. Trent S, Dennehy A, Richardson H, Ojarikre OA, Burgoyne PS, Humby T, Davies W (2011) Steroid sulfatase-deficient mice exhibit endophenotypes relevant to attention deficit hyperactivity disorder. Psychoneuroendocrinology 37:221–229PubMedCrossRefGoogle Scholar
  59. Vrana PB (2007) Genomic imprinting as a mechanism of reproductive isolation in mammals. J Mammal 88:5–23CrossRefGoogle Scholar
  60. Weidman JR, Dolinoy DC, Maloney KA, Cheng JF, Jirtle RL (2006) Imprinting of opossum Igf2r in the absence of differential methylation and Air. Epigenetics 1:49–54PubMedCrossRefGoogle Scholar
  61. Winking H, Silver LM (1984) Characterization of a recombinant mouse T haplotype that expresses a dominant lethal maternal effect. Genetics 108:1013–1020PubMedCentralPubMedGoogle Scholar
  62. Wood AJ, Oakey RJ (2006) Genomic imprinting in mammals: emerging themes and established theories. PLoS Genet 2:e147PubMedCentralPubMedCrossRefGoogle Scholar
  63. Wutz A, Theussl HC, Dausman J, Jaenisch R, Barlow DP, Wagner EF (2001) Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice. Development 128:1881–1887PubMedGoogle Scholar
  64. Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, Li X, Dai Q, Shen Y, Park B, Min JH, Jin P, Ren B, He C (2012) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149:1368–1380PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jean-Louis Guénet
    • 1
  • Fernando Benavides
    • 2
  • Jean-Jacques Panthier
    • 3
    • 4
  • Xavier Montagutelli
    • 3
  1. 1.Institut PasteurParisFrance
  2. 2.Division of Basic Science Research, Department of Molecular CarcinogenesisThe University of Texas MD Anderson Cancer CenterSmithvilleUSA
  3. 3.Mouse Functional Genetics UnitInstitut PasteurParisFrance
  4. 4.Ecole Nationale Vétérinaire d’AlfortMaisons-AlfortFrance

Personalised recommendations