Skip to main content

Cytogenetics

  • Chapter
  • First Online:
Genetics of the Mouse

Abstract

Cytogenetics, as the name indicates, lies at the intersection between cell biology and genetics. It came into being as an independent discipline after the advent of the chromosomal theory of heredity at the beginning of the twentieth century, when W.S. Sutton and T.H. Boveri (then T.H. Morgan) identified the chromosomes as the physical structures on which the genes were anchored (1902–1915).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Thomas H. Morgan was awarded the Nobel Prize in Physiology or Medicine in 1933 for his discoveries concerning the role played by the chromosomes in heredity. Morgan proposed that each chromosome contains a collection of small units called “genes” that were linearly arranged on the chromosomes.

  2. 2.

    A technique for rapid chromosome staining is provided at: http://www.jax.org/cyto/marrow_preps_alt.html.

  3. 3.

    The total number of chromosome arms per set of chromosomes is called the fundamental number (nombre fondamental) after Matthey.

  4. 4.

    UpD are exceptions that will be discussed later in this chapter and in Chap. 6.

  5. 5.

    Sometimes called nullosomies.

  6. 6.

    Mosaics refers to organisms whose cells have a different genetic makeup, although they are all derived from the same egg. Mice composed of both XO and XX cells, because one X was lost during development, for example, are mosaics. Chimeras are organisms whose cells do not have the same genetic makeup because they are derived from different embryonic cells. Mosaicism is natural, while chimerism is, in most instances, the result of experimental manipulation.

  7. 7.

    Tabby (Ta) is an X-linked coat color and fur marker. X Ta X + females are striped; X Ta Y males have a typical coat color with bare patches behind the ear, greasy fur, and a “sticky” tail. A Ta-striped male is then unexpected unless it is XXY. A female with a Tabby [Ta] phenotype is expected to be X0.

  8. 8.

    The theoretically expected 25 % of mice with a 39,0Y karyotype die at a very early stage of development because of the X nullisomy. X0 females seldom produce more than 10 % X0 offspring and have a reduced stock of oocytes, resulting in a much shorter breeding period than normal XX females.

  9. 9.

    Chromosome 2 appears to be more frequently involved in reciprocal translocations than expected based on its size (27 occurrences). The reason for this bias is unknown.

  10. 10.

    The reciprocal translocation T26H is one of the very few exceptions because it is associated with a coat-color change visible only in homozygous (T26H/T26H) animals. This change is probably a consequence of an alteration at the Agouti locus (Chr 2) generated by the structural rearrangement.

  11. 11.

    Experiments involving crosses between translocation carriers (T/+) are difficult to achieve because semi-sterility dramatically reduces progeny sizes. In addition, and as commented, some reciprocal translocation carriers are infertile, impeding many experiments.

  12. 12.

    A deletion (Del) is different from a deficiency (symbol Df) by its origin. Deficiency for a chromosome segment is generally associated with a duplication (Dp) of the same segment and results from the abnormal (unbalanced) segregation of a structurally rearranged chromosome.

  13. 13.

    In this case, the targeted cells were the late spermatids or spermatozoa.

  14. 14.

    Several autosomal primary trisomies have been described in the human species, but only three, trisomies for chromosome 13 (Patau syndrome), for chromosome 18 (Edwards syndrome), and for chromosome 21 (Down syndrome), affect live born children. Patau and Edwards syndromes are extremely severe. The relatively low gene density on chromosome 21 is consistent with the observation that trisomy 21 is one of the only viable human autosomal trisomies.

  15. 15.

    HSA21 = abbreviation for Homo sapiens chromosome 21; MMU16 = abbreviation for Mus musculus Chr 16.

  16. 16.

    This estimation of the number of genes on human chromosome 21 (HSA21) is from S. Scherer, A short guide to the human genome, Cold Spring Harbor Laboratory Press, 2008, p21.

References

  • Baron B, Métézeau P, Kiefer-Gachelin H, Goldberg ME (1990) Construction and characterization of a DNA library from mouse chromosomes 19 purified by flow cytometry. Biol Cell 69:1–8

    Article  CAS  PubMed  Google Scholar 

  • Beechey CV, Evans EP (1996) Numerical variants and structural rearrangements. In: Lyon MF, Rastan S, Brown SDM (eds) Genetic variants and strains of the laboratory mouse, vol 2, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Beechey CV, Searle AG (1988) Effects of zero to four copies of chromosome 15 on mouse embryonic development. Cytogenet Cell Genet 47:66–71

    Article  CAS  PubMed  Google Scholar 

  • Blasco MA (2005) Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. EMBO J 24:1095–1103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439

    Article  CAS  PubMed  Google Scholar 

  • Caspersson T, Lindsten J, Lomakka G, Moller A, Zech L (1972) The use of fluorescence techniques for the recognition of mammalian chromosomes and chromosome regions. Int Rev Exp Pathol 11:1–72

    CAS  PubMed  Google Scholar 

  • Caspersson T, Lindsten J, Lomakka G, Wallman H, Zech L (1970) Rapid identification of human chromosomes by TV-techniques. Exp Cell Res 63:477–479

    Article  CAS  PubMed  Google Scholar 

  • Cattanach BM (1961) XXY mice. Genet Res 2:156–158

    Article  Google Scholar 

  • Cattanach BM, Pollard CE (1969) An XYY sex-chromosome constitution in the mouse. Cytogenetics 8:80–86

    Article  CAS  PubMed  Google Scholar 

  • Cox DR, Smith SA, Epstein LB, Epstein CJ (1984) Mouse trisomy 16 as an animal model of human trisomy 21 (Down syndrome): production of viable trisomy 16 diploid mouse chimeras. Dev Biol 101:416–424

    Article  CAS  PubMed  Google Scholar 

  • Cox EK (1926) The chromosomes of the house mouse. J Morphol Physiol 43:45–54

    Article  Google Scholar 

  • Davisson MT, Roderick TH, Akeson EC, Hawes NL, Sweet HO (1990a) The hairy ears (Eh) mutation is closely associated with a chromosomal rearrangement in mouse chromosome 15. Genet Res 56:167–178

    Article  CAS  PubMed  Google Scholar 

  • Davisson MT, Schmidt C, Akeson EC (1990b) Segmental trisomy of murine chromosome 16: A new model system for studying Down syndrome. Prog Clin Biol Res 360:263–280

    CAS  PubMed  Google Scholar 

  • Davisson MT, Schmidt C, Reeves RH, Irving NG, Akeson EC, Harris BS, Bronson RT (1993) Segmental trisomy as a mouse model for Down syndrome. Prog Clin Biol Res 384:117–133

    CAS  PubMed  Google Scholar 

  • de Boer P, de Maar PHMD (1976) A histological study of embryonic death caused by heterozygosity for the T26H reciprocal mouse translocation. J Embryol Exp Morph 35:595–606

    Google Scholar 

  • Eicher EM, Green MC (1972) The T6 translocation in the mouse: its use in trisomy mapping, centromere localization, and cytological identification of linkage group 3. Genetics 71:621–632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eicher EM, Washburn LL (1978) Assignment of genes to regions of mouse chromosomes. Proc Natl Acad Sci U S A 75:946–950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Epstein CJ, Cox DR, Epstein LB (1985) Mouse trisomy 16: an animal model of human trisomy 21 (Down syndrome). Ann N Y Acad Sci 450:157–168

    Article  CAS  PubMed  Google Scholar 

  • Epstein C (1990) Genetic control of survival of murine trisomy 16 fetuses. Teratology 42:571–580

    Article  CAS  PubMed  Google Scholar 

  • Forejt J (1973) Centromeric heterochromatin polymorphism in the house mouse. Evidence from inbred strains and natural populations. Chromosoma 43:187–201

    Article  CAS  PubMed  Google Scholar 

  • Fundele R, Jägerbauer EM, Kolbus U, Winking H, Gropp A (1985) Viability of trisomy 12 cells in mouse chimaeras. Wilhelm Roux’s Arch Dev Biol 194:178–180

    Article  Google Scholar 

  • Gluecksohn-Waelsch S (1979) Genetic control of morphogenetic and biochemical differentiation: lethal albino deletions in the mouse. Cell 16:225–237

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Takagi N (1998) Tetraploid embryos rescue embryonic lethality caused by an additional maternally inherited X chromosome in the mouse. Development 125:3353–3363

    CAS  PubMed  Google Scholar 

  • Green J, Ried T (eds) (2011) Genetically Engineered mice for cancer research: design, analysis, pathways, validation and pre-clinical testing. Springer

    Google Scholar 

  • Gropp A, Kolbus U, Giers D (1975) Systematic approach to the study of trisomy in the mouse II. Cytogenet Cell Genet 14:42–62

    Article  CAS  PubMed  Google Scholar 

  • Hauffe HC, Giménez MD, Garagna S, Searle JB (2010) First wild XXY house mice. Chromosome Res 18:599–604

    Article  CAS  PubMed  Google Scholar 

  • Herault Y, Duchon A, Velot E, Maréchal D, Brault V (2012) The in vivo Down syndrome genomic library in mouse. Prog Brain Res 197:169–197

    Article  CAS  PubMed  Google Scholar 

  • Hernandez D, Fisher EM (1999) Mouse autosomal trisomy: two’s company, three’s a crowd. Trends Genet 15:241–247

    Article  CAS  PubMed  Google Scholar 

  • Hunt PA, Eicher EM (1991) Fertile male mice with three sex chromosomes: evidence that infertility in XYY male mice is an effect of two Y chromosomes. Chromosoma 100:293–299

    Article  CAS  PubMed  Google Scholar 

  • Katayama K, Miyamoto S, Furuno A, Akiyama K, Takahashi S, Suzuki H, Tsuji T, Kunieda T (2009) Characterization of the chromosomal inversion associated with the Koa mutation in the mouse revealed the cause of skeletal abnormalities. BMC Genet 10:60. doi:10.1186/1471-2156-10-60

  • Kaufman MH, Lee KKH, Speirs S (1989) Influence of diandric and digynic triploid genotypes on early mouse embryogenesis. Development 105:137–145

    CAS  PubMed  Google Scholar 

  • Kim SH, Parrinello S, Kim J, Campisi J (2003) Mus musculus and M. spretus homologues of the human telomere-associated protein TIN2. Genomics 81:422–432

    Article  CAS  PubMed  Google Scholar 

  • Klebig ML, Kwon BS, Rinchik EM (1992) Physical analysis of murine albino deletions that disrupt liver-specific gene regulation or mesoderm development. Mamm Genome 2:51–63

    Article  CAS  PubMed  Google Scholar 

  • Kubiak JZ, Tarkowski AK (1985) Electrofusion of mouse blastomeres. Exp Cell Res 157:561–566

    Article  CAS  PubMed  Google Scholar 

  • Leeb M, Wutz A (2011) Derivation of haploid embryonic stem cells from mouse embryos. Nature 479:131–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liyanage M, Coleman A, du Manoir S, Veldman T, McCormack S, Dickson RB, Barlow C, Wynshaw-Boris A, Janz S, Wienberg J, Ferguson-Smith MA, Schröck E, Ried T (1996) Multicolour spectral karyotyping of mouse chromosomes. Nat Genet 14:312–315

    Article  CAS  PubMed  Google Scholar 

  • Magnuson T, Debrot S, Dimpfl J, Zweig A, Zamora T, Epstein CJ (1985) The early lethality of autosomal monosomy in the mouse. J Exp Zool 236:353–360

    Article  CAS  PubMed  Google Scholar 

  • Miller OJ, Miller DA (1975) Cytogenetics of the mouse. Annu Rev Genet 9:285–303

    Article  CAS  PubMed  Google Scholar 

  • Miller OJ, Miller DA, Kouri RE, Allderdice PW, Dev VG, Grewal MS, Hutton JJ (1971) Identification of the mouse karyotype by quinacrine fluorescence, and tentative assignment of seven linkage groups. Proc Natl Acad Sci U S A 68:1530–1533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morris T (1968) The XO and OY chromosome constitutions in the mouse. Genet Res 12:125–137

    Article  CAS  PubMed  Google Scholar 

  • Muller HJ, Herskowitz IH, Abrahamson S, Oster II (1954) A nonlinear relation between x-ray dose and recovered lethal mutations in drosophila. Genetics 39:741–749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naumann R (2008) Production of tetraploid mouse embryos by electrofusion. Biocompare article, Monday, 04 Aug 2008

    Google Scholar 

  • Nesbitt MN, Francke U (1973) A system of nomenclature for band patterns of mouse chromosomes. Chromosoma 41:145–158

    Article  CAS  PubMed  Google Scholar 

  • Niemierko A (1981) Postimplantation development of CB-induced triploid mouse embryos. J Embryol Exp Morphol 66:81–89

    CAS  PubMed  Google Scholar 

  • O’Doherty A, Ruf S, Mulligan C, Hildreth V, Errington ML, Cooke S, Sesay A, Modino S, Vanes L, Hernandez D, Linehan JM, Sharpe PT, Brandner S, Bliss TV, Henderson DJ, Nizetic D, Tybulewicz VL, Fisher EM (2005) An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309:2033–2037

    Article  PubMed Central  PubMed  Google Scholar 

  • Reeves RH, Irving NG, Moran TH, Wohn A, Kitt C, Sisodia SS, Schmidt C, Bronson RT, Davisson MT (1995) A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat Genet 11:177–184

    Article  CAS  PubMed  Google Scholar 

  • Roderick TH, Hawes NL (1974) Nineteen paracentric chromosomal inversions in mice. Genetics 76:109–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rueda N, Flórez J, Martínez-Cué C (2012) Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast 2012:584071, Article ID 584071. doi:10.1155/2012/584071

  • Sahin E, De Pinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464:520–528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sawyer JR, Moore MM, Hozier JC (1987) High resolution G-banded chromosomes of the mouse. Chromosoma 95:350–358

    Article  CAS  PubMed  Google Scholar 

  • Schriever-Schwemmer G, Adler ID (1993) A mouse stock with 38 chromosomes derived from the reciprocal translocation T(7;15)33Ad. Cytogenet Cell Genet 64:122–127

    Article  CAS  PubMed  Google Scholar 

  • Schulz-Schaeffer J (1980) Cytogenetics plants—animals—humans. Springer, New York

    Google Scholar 

  • Searle AG, Ford CE, Beechey CV (1971) Meiotic disjunction in mouse translocations and the determination of centromere position. Genet Res 18:215–235

    Article  CAS  PubMed  Google Scholar 

  • Sumner AT, Evans HJ, Buckland RA (1971) New technique for distinguishing between human chromosomes. Nat New Biol 232:31–32

    Article  CAS  PubMed  Google Scholar 

  • Torgasheva AA, Borodin PM (2001) Synapsis and recombination in inversion heterozygotes. Biochem Soc Trans 38:1676–1680

    Article  Google Scholar 

  • Uhlmann F (2013) Open questions: chromosome condensation—why does a chromosome look like a chromosome? BMC Biol 11:9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vig BK, Latour D, Frankovich J (1994) Dissociation of minor satellite from the centromere in mouse. J Cell Sci 107:3091–3095

    CAS  PubMed  Google Scholar 

  • Yu T, Li Z, Jia Z, Clapcote SJ, Liu C, Li S, Asrar S, Pao A, Chen R, Fan N, Carattini-Rivera S, Bechard AR, Spring S, Henkelman RM, Stoica G, Matsui S, Nowak NJ, Roder JC, Chen C, Bradley A, Yu YE (2010) A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Hum Mol Genet 19:2780–2791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang S, Teng Y (2013) Powering mammalian genetic screens with mouse haploid embryonic stem cells. Mutat Res 741–742:44–50

    Article  PubMed  Google Scholar 

  • Zhu L, Hathcock KS, Hande P, Lansdorp PM, Seldin MF, Hodes RJ (1998) Telomere length regulation in mice is linked to a novel chromosome locus. Proc Natl Acad Sci U S A 95:8648–8653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are appreciative of the critical comments on the present chapter provided by Drs. Marie Geneviève Mattei (Hôpital de la Timone, Marseille) and Yann Herault (Institut Clinique de la Souris, Strasbourg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Guenet .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guenet, JL., Benavides, F., Panthier, JJ., Montagutelli, X. (2015). Cytogenetics. In: Genetics of the Mouse. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44287-6_3

Download citation

Publish with us

Policies and ethics