Skip to main content

Genome Sequence and Gene Functions in Mesorhizobium loti and Relatives

  • Chapter
  • First Online:
The Lotus japonicus Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Mesorhizobium loti is a collective name for mesorhizobial species that establish nitrogen-fixing symbiosis with Lotus species. Accumulating genetic and genomic data indicate that diverse strains of M. loti have been generated through lateral integration of symbiosis islands into core chromosomes of a range of bacteria. The M. loti symbiosis islands probably derived from a common ancestral island and are evolving by acquiring accessory genetic elements while maintaining gene sets essential for nodulation and nitrogen fixation together with genes for some supportive processes. This view was supported by preliminary mappings of next-generation sequencing data of three strains, R7A, NZP2037, and NZP2213, on the whole-genome sequence of the strain MAFF303099. Common properties of M. loti genes involved in symbiosis and their regulation are also described along with genetic resources to study M. loti.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banba M, Siddique AB, Kouchi H, Izui K, Hata S (2001) Lotus japonicus forms early senescent root nodules with Rhizobium etli. Mol Plant Microbe Interact 14(2):173–180

    Article  PubMed  CAS  Google Scholar 

  • Chua KY, Pankhurst CE, Macdonald PE, Hopcroft DH, Jarvis BD, Scott DB (1985) Isolation and characterization of transposon Tn5-induced symbiotic mutants of Rhizobium loti. J Bacteriol 162(1):335–343

    PubMed  CAS  PubMed Central  Google Scholar 

  • D’Antuono AL, Casabuono A, Couto A, Ugalde RA, Lepek VC (2005) Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis. Mol Plant Microbe Interact 18(5):446–457

    Article  PubMed  Google Scholar 

  • de Lyra Mdo C, Lopez-Baena FJ, Madinabeitia N, Vinardell JM, Espuny Mdel R, Cubo MT, Belloguin RA, Ruiz-Sainz JE, Ollero FJ (2006) Inactivation of the Sinorhizobium fredii HH103 rhcJ gene abolishes nodulation outer proteins (Nops) secretion and decreases the symbiotic capacity with soybean. Int Microbiol 9(2):125–133

    Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2(8):621–631

    Article  PubMed  CAS  Google Scholar 

  • Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387(6631):394–401

    Article  PubMed  CAS  Google Scholar 

  • Gagnon H, Ibrahim RK (1998) Aldonic Acids: A Novel Family of nod Gene Inducers of Mesorhizobium loti, Rhizobium lupini, and Sinorhizobium meliloti. Mol Plant Microbe Interact 11(10):988–998

    Article  CAS  Google Scholar 

  • Geremia RA, Mergaert P, Geelen D, Van Montagu M, Holsters M (1994) The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase. Proc Natl Acad Sci USA 91(7):2669–2673

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hakoyama T, Niimi K, Watanabe H, Tabata R, Matsubara J, Sato S, Nakamura Y, Tabata S, Jichun L, Matsumoto T, Tatsumi K, Nomura M, Tajima S, Ishizaka M, Yano K, Imaizumi-Anraku H, Kawaguchi M, Kouchi H, Suganuma N (2009) Host plant genome overcomes the lack of a bacterial gene for symbiotic nitrogen fixation. Nature 462(7272):514–517

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Tanishita Y, Suda Y, Murakami E, Nagata M, Kucho K-I, Abe M, Uchiumi T (2012) Characterization of nitric oxide-inducing lipid a derived from Mesorhizobium loti lipopolysaccharide. Microbes Environ 27(4):490–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoover TR, Robertson AD, Cerny RL, Hayes RN, Imperial J, Shah VK, Ludden PW (1987) Identification of the V factor needed for synthesis of the iron-molybdenum cofactor of nitrogenase as homocitrate. Nature 329:855–857

    Article  PubMed  CAS  Google Scholar 

  • Hotter GS, Scott DB (1991) Exopolysaccharide mutants of Rhizobium loti are fully effective on a determinate nodulating host but are ineffective on an indeterminate nodulating host. J Bacteriol 173(2):851–859

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hubber A, Vergunst AC, Sullivan JT, Hooykaas PJJ, Ronson CW (2004) Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol 54(2):561–574

    Article  PubMed  CAS  Google Scholar 

  • Hubber AM, Sullivan JT, Ronson CW (2007) Symbiosis-induced cascade regulation of the Mesorhizobium loti R7A VirB/D4 Type IV secretion system. Mol Plant Microbe Interact 20(3):255–261

    Article  PubMed  CAS  Google Scholar 

  • Hussain AKMA, Jiang Q, Broughton WJ, Gresshoff PM (1999) Lotus japonicus nodulates and fixes nitrogen with the broad host range Rhizobium sp. NGR234. Plant Cell Physiol 40(8):894–899

    Article  CAS  Google Scholar 

  • Itakura M, Saeki K, Omori H, Yokoyama T, Kaneko T, Tabata S, Ohwada T, Tajima S, Uchiumi T, Honnma K, Fujita K, Iwata H, Saeki Y, Hara Y, Ikeda S, Eda S, Mitsui H, Minamisawa K (2009) Genomic comparison of Bradyrhizobium japonicum strains with different symbiotic nitrogen-fixing capabilities and other Bradyrhizobiaceae members. ISME J 3(3):326–339

    Article  PubMed  CAS  Google Scholar 

  • Jarvis BDW, Pankhurst CE, Patel JJ (1982) Rhizobium loti, a New Species of Legume Root Nodule Bacteria. Int J Syst Bacteriol 32(3):378–380

    Article  Google Scholar 

  • Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47(3):895–898

    Article  Google Scholar 

  • John M, Rohrig H, Schmidt J, Wieneke U, Schell J (1993) Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc Natl Acad Sci USA 90(2):625–629

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kamst E, van der Drift KM, Thomas-Oates JE, Lugtenberg BJ, Spaink HP (1995) Mass spectrometric analysis of chitin oligosaccharides produced by Rhizobium NodC protein in Escherichia coli. J Bacteriol 177(21):6282–6285

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7(6):331–338

    Article  PubMed  CAS  Google Scholar 

  • Kasai-Maita H, Hirakawa H, Nakamura Y, Kaneko T, Miki K, Maruya J, Okazaki S, Tabata S, Saeki K, Sato S (2013) Commonalities and differences among symbiosis islands of three Mesorhizobium loti strains. Microbes Environ 28(2):275–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawaharada Y, Eda S, Minamisawa K, Mitsui H (2007) A Mesorhizobium loti mutant with reduced glucan content shows defective invasion of its host plant Lotus japonicus. Microbiology 153(12):3983–3993

    Article  PubMed  CAS  Google Scholar 

  • Kawaharada Y, Kiyota H, Eda S, Minamisawa K, Mitsui H (2010) Identification of the Mesorhizobium loti gene responsible for glycerophosphorylation of periplasmic cyclic β-1,2-glucans. FEMS Microbiol Lett 302(2):131–137

    Article  PubMed  CAS  Google Scholar 

  • Kelly SJ, Muszynski A, Kawaharada Y, Hubber AM, Sullivan JT, Sandal N, Carlson RW, Stougaard J, Ronson CW (2013) Conditional requirement for exopolysaccharide in the Mesorhizobium-Lotus symbiosis. Mol Plant-Microbe Interact MPMI 26(3):319–329

    Article  CAS  Google Scholar 

  • Krause A, Doerfel A, Gottfert M (2002) Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol Plant-Microbe Interact MPMI 15(12):1228–1235

    Article  CAS  Google Scholar 

  • Krishnan HB, Lorio J, Kim WS, Jiang G, Kim KY, DeBoer M, Pueppke SG (2003) Extracellular proteins involved in soybean cultivar-specific nodulation are associated with pilus-like surface appendages and exported by a type III protein secretion system in Sinorhizobium fredii USDA257. Mol Plant Microbe Interact 16(7):617–625

    Article  PubMed  CAS  Google Scholar 

  • Leroux B, Yanofsky MF, Winans SC, Ward JE, Ziegler SF, Nester EW (1987) Characterization of the virA locus of Agrobacterium tumefaciens: a transcriptional regulator and host range determinant. EMBO J 6(4):849–856

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lopez-Lara IM, van den Berg JD, Thomas-Oates JE, Glushka J, Lugtenberg BJ, Spaink HP (1995) Structural identification of the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti. Mol Microbiol 15(4):627–638

    Article  PubMed  CAS  Google Scholar 

  • Marie C, Broughton WJ, Deakin WJ (2001) Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 4(4):336–342

    Article  PubMed  CAS  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17(10):458–466

    Article  PubMed  CAS  Google Scholar 

  • Murakami E, Nagata M, Shimoda Y, Kucho K-I, Higashi S, Abe M, Hashimoto M, Uchiumi T (2011) Nitric Oxide Production Induced in Roots of Lotus japonicus by Lipopolysaccharide from Mesorhizobium loti. Plant Cell Physiol 52(4):610–617

    Article  PubMed  CAS  Google Scholar 

  • Niwa S, Kawaguchi M, Imazumi-Anraku H, Chechetka SA, Ishizaka M, Ikuta A, Kouchi H (2001) Responses of a model legume Lotus japonicus to lipochitin oligosaccharide nodulation factors purified from Mesorhizobium loti JRL501. Mol Plant Microbe Interact 14(7):848–856

    Article  PubMed  CAS  Google Scholar 

  • Nukui N, Minamisawa K, Ayabe S, Aoki T (2006) Expression of the 1-aminocyclopropane-1-carboxylic acid deaminase gene requires symbiotic nitrogen-fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Appl Environ Microbiol 72(7):4964–4969

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Okazaki S, Zehner S, Hempel J, Lang K, Göttfert M (2009) Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii. FEMS Microbiol Lett 295(1):88–95

    Article  PubMed  CAS  Google Scholar 

  • Okazaki S, Okabe S, Higashi M, Shimoda Y, Sato S, Tabata S, Hashiguchi M, Akashi R, Göttfert M, Saeki K (2010) Identification and functional analysis of type III effector proteins in Mesorhizobium loti. Mol Plant Microbe Interact 23(2):223–234

    Article  PubMed  CAS  Google Scholar 

  • Pankhurst CE, Craig AS, Jones WT (1979) Effectiveness of Lotus root nodules: I. Morphology and flavolan content of nodules formed on Lotus pedunculatus by fast growing Lotus rhizobia. J Exp Bot 30(6):1085–1093

    Article  CAS  Google Scholar 

  • Pankhurst CE, Hopcroft DH, Jones WT (1987) Comparative morphology and flavolan content of Rhizobium loti induced effective and ineffective root nodules on Lotus species, Leuceana leucocephala, Carmichaelia flagelliformis, Ornithopus sativus, and Clianthus puniceus. Can J Bot 65:2676–2685

    Article  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64(1):180–201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Popendorf K, Tsuyoshi H, Osana Y, Sakakibara Y (2010) Murasaki: a fast, parallelizable algorithm to find anchors from multiple genomes. PLoS One. 5(9):e12651

    Article  PubMed  PubMed Central  Google Scholar 

  • Pueppke SG, Broughton WJ (1999) Rhizobium sp. Strain NGR234 and R. fredii USDA257 Share Exceptionally Broad, Nested Host Ranges. Mol Plant Microbe Interact 12(4):293–318

    Article  PubMed  CAS  Google Scholar 

  • Ramsay JP, Sullivan JT, Stuart GS, Lamont IL, Ronson CW (2006) Excision and transfer of the Mesorhizobium loti R7A symbiosis island requires an integrase IntS, a novel recombination directionality factor RdfS, and a putative relaxase RlxS. Mol Microbiol 62(3):723–734

    Article  PubMed  CAS  Google Scholar 

  • Ramsay JP, Sullivan JT, Jambari N, Ortori CA, Heeb S, Williams P, Barrett DA, Lamont IL, Ronson CW (2009) A LuxRI-family regulatory system controls excision and transfer of the Mesorhizobium loti strain R7A symbiosis island by activating expression of two conserved hypothetical genes. Mol Microbiol 73(6):1141–1155

    Article  PubMed  CAS  Google Scholar 

  • Ramsay JP, Major AS, Komarovsky VM, Sullivan JT, Dy RL, Hynes MF, Salmond GP, Ronson CW (2013) A widely conserved molecular switch controls quorum sensing and symbiosis island transfer in Mesorhizobium loti through expression of a novel antiactivator. Mol Microbiol 87(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Ribbe MW, Hu Y, Guo M, Schmid B, Burgess BK (2002) The FeMoco-deficient MoFe protein produced by a nifH deletion strain of Azotobacter vinelandii shows unusual P-cluster features. J Biol Chem 277(26):23469–23476

    Article  PubMed  CAS  Google Scholar 

  • Ritsema T, Wijfjes AH, Lugtenberg BJ, Spaink HP (1996) Rhizobium nodulation protein NodA is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis. Mol Gen Genet 251(1):44–51

    PubMed  CAS  Google Scholar 

  • Roche P, Maillet F, Plazanet C, Debelle F, Ferro M, Truchet G, Prome JC, Denarie J (1996) The common nodABC genes of Rhizobium meliloti are host-range determinants. Proc Natl Acad Sci USA 93(26):15305–15310

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rodpothong P, Sullivan JT, Songsrirote K, Sumpton D, Cheung KWJT, Thomas-Oates J, Radutoiu S, Stougaard J, Ronson CW (2009) Nodulation Gene Mutants of Mesorhizobium loti R7A—nodZ and nolL Mutants Have Host-Specific Phenotypes on Lotus spp. Mol Plant Microbe Interact 22(12):1546–1554

    Article  PubMed  CAS  Google Scholar 

  • Rohrig H, Schmidt J, Wieneke U, Kondorosi E, Barlier I, Schell J, John M (1994) Biosynthesis of lipooligosaccharide nodulation factors: Rhizobium NodA protein is involved in N-acylation of the chitooligosaccharide backbone. Proc Natl Acad Sci USA 91(8):3122–3126

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C, Mercante V, Babuin MF, Lepek VC (2012) Dual effect of Mesorhizobium loti T3SS functionality on the symbiotic process. FEMS Microbiol Lett 330(2):148–156

    Article  PubMed  CAS  Google Scholar 

  • Sawada H, Kuykendall LD, Young JM (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J General Appl Microbiol 49(3):155–179

    Article  CAS  Google Scholar 

  • Schlaman HR, Phillips DA, Kondorosi E (1998) Genetic organization and transcriptional regulation of rhizobial nodulation genes. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria. Kluwer Academic Publishers, Dordrecht, pp 361–386

    Chapter  Google Scholar 

  • Schumpp O, Crevecoeur M, Broughton WJ, Deakin WJ (2009) Delayed maturation of nodules reduces symbiotic effectiveness of the Lotus japonicus-Rhizobium sp. NGR234 interaction. J Exp Bot 60(2):581–590

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shimoda Y, Mitsui H, Kamimatsuse H, Minamisawa K, Nishiyama E, Ohtsubo Y, Nagata Y, Tsuda M, Shinpo S, Watanabe A, Kohara M, Yamada M, Nakamura Y, Tabata S, Sato S (2008) Construction of signature-tagged mutant library in Mesorhizobium loti as a powerful tool for functional genomics. DNA Res 15(5):297–308

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Spaink HP (1995) The molecular basis of infection and nodulation by rhizobia: the ins and outs of sympathogenesis. Annu Rev Phytopathol 33(1):345–368

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JT, Ronson CW (1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci USA 95(9):5145–5149

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci 92(19):8985–8989

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sullivan JT, Eardly BD, van Berkum P, Ronson CW (1996) Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus. Appl Environ Microbiol 62(8):2818–2825

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sullivan JT, Brown SD, Yocum RR, Ronson CW (2001) The bio operon on the acquired symbiosis island of Mesorhizobium sp. strain R7A includes a novel gene involved in pimeloyl-CoA synthesis. Microbiology 147(5):1315–1322

    PubMed  CAS  Google Scholar 

  • Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, De Bruijn FJ, Ronson CW (2002) Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 184(11):3086–3095

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sullivan JT, Brown SD, Ronson CW (2013) The NifA-RpoN regulon of Mesorhizobium loti strain R7A and its symbiotic activation by a novel LacI/GalR-family regulator. PLoS ONE 8(1):e53762

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Terpolilli JJ, Hood GA, Poole PS (2012) What Determines the Efficiency of N2-Fixing Rhizobium-Legume Symbioses ? Adv Microb Physiol 60:325–389

    Article  PubMed  CAS  Google Scholar 

  • Turner SL, Zhang X-X, Li F-D, Young JPW (2002) What does a bacterial genome sequence represent? Mis-assignment of MAFF 303099 to the genospecies Mesorhizobium loti. Microbiology 148(11):3330–3331

    PubMed  CAS  Google Scholar 

  • Turska-Szewczuk A, Łotocka B, Kutkowska J, Król J, Urbanik-Sypniewska T, Russa R (2009) The incomplete substitution of lipopolysaccharide with O-chain prevents the establishment of effective symbiosis between Mesorhizobium loti NZP2213.1 and Lotus corniculatus. Microbiol Res 164(2):163–173

    Article  PubMed  CAS  Google Scholar 

  • Uchiumi T, Ohwada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima K, Saeki K, Omori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda Y, Sioya K, Abe M, Minamisawa K (2004) Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J Bacteriol 186(8):2439–2448

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wassem R, Kobayashi H, Kambara K, Le Quéré A, Walker GC, Broughton WJ, Deakin WJ (2008) TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes. Mol Microbiol 68(3):736–748

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Willems A, Hoste B, Tang J, Janssens D, Gillis M (2001) Differences between subcultures of the Mesorhizobium loti type strain from different culture collections. Syst Appl Microbiol 24(4):549–553

    Article  PubMed  CAS  Google Scholar 

  • Winans SC, Ebert PR, Stachel SE, Gordon MP, Nester EW (1986) A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proc Natl Acad Sci USA 83(21):8278–8282

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zehner S, Schober G, Wenzel M, Lang K, Göttfert M (2008) Expression of the Bradyrhizobium japonicum Type III Secretion System in Legume Nodules and Analysis of the Associated tts box Promoter. Mol Plant Microbe Interact 21(8):1087–1093

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Saeki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saeki, K., Ronson, C.W. (2014). Genome Sequence and Gene Functions in Mesorhizobium loti and Relatives. In: Tabata, S., Stougaard, J. (eds) The Lotus japonicus Genome. Compendium of Plant Genomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44270-8_5

Download citation

Publish with us

Policies and ethics