Skip to main content

TILLING in Lotus japonicus

  • Chapter
  • First Online:

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Following the seminal work on TILLING in Arabidopsis thaliana, a population of EMS-mutagenized plants was established for Lotus japonicus ‘Gifu’ to be used for both forward and reverse screening. This was developed into the Lotus TILLING platform which subsequently became RevGenUK covering not only TILLING in L. japonicus, but also Medicago truncatula and other species. Over the last 10 years, nearly two thousand mutations for more than 160 genes have been identified using the platform. In this article, we cover the history, development and current technology employed in the process and explore the impact TILLING has had on Lotus research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersen SU, Cvitanich C, Hougaard BK, Roussis A, Grønlund M, Jensen DB, Frøkjær LA, Jensen EØ (2003) The glucocorticoid-inducible GVG system causes severe growth defects in both root and shoot of the model legume Lotus japonicus. Mol Plant-Microbe Interact 16:1069–1076

    Article  PubMed  CAS  Google Scholar 

  • Asamizu E, Shimoda Y, Kouchi H, Tabata S, Sato S (2008) A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of Lotus japonicus. Plant Physiol 147:2030–2040

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bustos-Sanmamed P, Bazin J, Hartmann C, Crespi M, Lelandais-Brière C (2013) Small RNA pathways and diversity in model legumes: lessons from genomics. Front Plant Sci 4, art 236. doi:10.3389/fpls.2013.00236

  • Credali A, García-Calderón M, Dam S, Perry J, Díaz-Quintana A, Parniske M, Wang TL, Stougaard J, Vega JM, Márquez AJ (2013) The K+-dependent asparaginase, NSE1, is crucial for plant growth and seed production in Lotus japonicus. Plant Cell Physiol 54:107–118

    Article  PubMed  CAS  Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Den Herder G, Yoshida S, Antolín-Llovera M, Ried MK, Parniske M (2012) Lotus japonicus E3 Ligase SEVEN IN ABSENTIA4 destabilizes the symbiosis receptor-like kinase SYMRK and negatively regulates rhizobial Infection. Plant Cell 24:1691–1707

    Article  Google Scholar 

  • Dong Z-C, Zhao Z, Liu C-W, Luo J-H, Yang J, Huang W-H, Hu X-H, Wang Tl, Luo D (2005) Floral patterning. In Lotus japonicus. Plant Physiol 137:1272–1282

    Google Scholar 

  • Gaude N, Tippmann H, Flemetakis E, Katinakis P, Udvardi M, Dörmann P (2004) The galactolipid digalactosyldiacylglycerol accumulates in the peribacteroid membrane of nitrogen-fixing nodules of soybean and Lotus. J Biol Chem 279:34624–34630

    Article  PubMed  CAS  Google Scholar 

  • Groth M, Kosuta S, Haage K, Hardel S, Gutjahr C, Brachmann A, Sato S, Tabata S, Findlay K, Wang T, Parniske M (2013) Two Lotus japonicus symbiosis mutants impaired at distinct steps of arbuscule development. Plant J 75:117–129

    Article  PubMed  CAS  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR et al (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    PubMed  CAS  PubMed Central  Google Scholar 

  • Grønlund M, Gustafsen C, Roussis A, Jensen D, Nielsen L, Marcker K, Jensen E (2003) The Lotus japonicus NDX gene family is involved in nodule function and maintenance. Plant Mol Biol 52:303–316

    Article  PubMed  Google Scholar 

  • Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hakoyama T, Watanabe H, Tomita J, Yamamoto A, Sato S, Mori Y, Kouchi H, Suganuma N (2009) Nicotianamine synthase specifically expressed in root nodules of Lotus japonicus. Planta 230:309–317

    Article  PubMed  CAS  Google Scholar 

  • Horst I, Welham T, Kelly S, Kaneko T, Sato S, Tabata S, Parniske M, Wang TL (2007) TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase. Plant Physiol 144:806–820

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K et al (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–531

    Article  PubMed  CAS  Google Scholar 

  • Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EMH, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Nat Acad Sci USA 103:359–364

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kapranov P, M. Routt S, Bankaitis VA, de Bruijn FJ, Szczyglowski K (2001) Nodule-specific regulation of phosphatidylinositol transfer protein expression in Lotus japonicus. Plant Cell 13:1369-1382

    Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    Article  PubMed  CAS  Google Scholar 

  • Krokida A, Delis C, Geisler K, Garagounis C, Tsikou D, Peña-Rodríguez LM, Katsarou D, Field B, Osbourn AE, Papadopoulou KK (2013) A metabolic gene cluster in Lotus japonicus discloses novel enzyme functions and products in triterpene biosynthesis. New Phytol 200:675–690

    Article  PubMed  CAS  Google Scholar 

  • Krusell L, Krause K, Ott T, Desbrosses G, Krämer U, Sato S, Nakamura Y, Tabata S, James EK, Sandal N, Stougaard S, Kawaguchi M, Miyamoto A, Suganuma N, Udvardi MK (2005) The sulphate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17:1625–1636

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krusell L, Sato N, Fukuhara I, Koch BEV, Grossmann C, Okamoto S, Oka-Kira E, Otsubo Y, Aubert G, Nakagawa T, Sato S, Tabata S, Duc G, Perry J, Wang TL, Kawaguchi M, Stougaard J (2011) The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation and shoot architecture. Plant J 65:861–871

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081

    Article  PubMed  CAS  Google Scholar 

  • Le Signor C, Savois V, Aubert G, Verdier J, Nicolas M, Pagny G, Moussy F, Sanchez M, Baker D, Clarke J, Thompson R (2009) Optimizing TILLING populations for reverse genetics in Medicago truncatula. Plant Biotechnol 7:430–441

    Google Scholar 

  • Lohmann GV, Shimoda Y, Nielsen MW, Jørgensen FG, Grossmann C, Sandal N, Sørensen K, Thirup S, Madsen LH, Tabata S, Sato S, Stougaard J, Radutoiu S (2010) Evolution and regulation of the Lotus japonicus LysM receptor gene family. Mol Plant-Microbe Interact 23:510–521

    Article  PubMed  CAS  Google Scholar 

  • Maekawa-Yoshikawa M, Müller J, Takeda N, Maekawa T, Sato S, Tabata S, Perry J, Wang TL, Groth M, Brachmann A, Parniske M (2009) The temperature-sensitive brush mutant of the legume Lotus japonicus reveals a link between root development and nodule infection by rhizobia. Plant Physiol 149:1785–1796

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting Induced Local Lesions IN Genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morant AV, Bjarnholt N, Kragh ME, Kjærgaard CH, Jørgensen K, Paquette SM, Piotrowski M, Imberty A, Olsen CE, Møller BL, Bak S (2008) The β-Glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus. Plant Physiol 147:1072–1091

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by rhizobium in the absence of nodule organogenesis. Science 315:101–104

    Article  PubMed  CAS  Google Scholar 

  • Nagata M, Murakami EI, Shimoda Y, Shimoda-Sasakura F, Kucho KI, Suzuki A, Abe M, Higashi S, Uchiumi T (2008) Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus. Mol Plant-Microbe Interact 21:1175–1183

    Article  PubMed  CAS  Google Scholar 

  • Olsen O, Wang X, Von Wettstein D (1993) Sodium azide mutagenesis: preferential generation of AT → GC transitions in the barley Antl8 gene. Proc Nat Acad Sci USA 90:8043–8047

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Parry MAJ, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips AL (2009) Mutation discovery for crop improvement. J Exp Bot 60:2817–2825

    Article  PubMed  CAS  Google Scholar 

  • Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, Parniske M (2003) A TILLING reverse genetics tool and a web accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131:866–871

    Google Scholar 

  • Perry J, Welham T, Cheminant S, Parniske M, Wang T (2005) TILLING. In: Márquez AJ (ed) Lotus japonicus Handbook Springer, Dordrecht, Chapter 5.3, pp 197–210

    Google Scholar 

  • Perry J, Welham T, Brachmann A, Binder A, Charpentier M, Groth M, Haage K, Markmann K, Wang TL, Parniske M (2009) TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in non-functional alleles towards hits in in glycine codons. Plant Physiol 151:1281–1291

    Google Scholar 

  • Roberts NJ, Brigham J, Wu B, Murphy JB, Volpin H, Phillips DA, Etzler ME (1999) A nod factor-binding lectin is a member of a distinct class of apyrases that may be unique to the legumes. Mol Gen Genet 262:261–267

    Article  PubMed  CAS  Google Scholar 

  • Roberts NJ, Morieri G, Kalsi G, Rose A, Stiller J, Edwards A, Xie F, Gresshoff PM, Oldroyd GED, Downie JA, Etzler ME (2013) Rhizobial and mycorrhizal symbioses in Lotus japonicus require lectin nucleotide phosphohydrolase, which acts upstream of calcium signalling. Plant Physiol 161:556–567

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Serna-Sanz A, Parniske M, Peck SC (2011) Phosphoproteome analysis of Lotus japonicus roots reveals shared and distinct components of symbiosis and defense. Mol Plant-Microbe Interact 24:932–937

    Article  PubMed  CAS  Google Scholar 

  • Shelton D, Stranne M, Mikklesen L, Pakseresht N, Welham T, Hiraka H, Tabata S, Sato S, Paquette S, Wang TL, Martin C, Bailey P (2012) Transcription factors of Lotus japonicus: regulation of isoflavonoid biosynthesis requires co-ordinated changes in transcription factor activity. Plant Physiol 159:531–547

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Takanashi K, Sugiyama A, Sato S, Tabata S, Yazaki K (2012) LjABCB1, an ATP-binding cassette protein specifically induced in uninfected cells of Lotus japonicus nodules. J Plant Physiol 169:322–326

    Article  PubMed  CAS  Google Scholar 

  • Takeda N, Tsuzuki S, Suzaki T, Parniske M, Kawaguchi M (2013) CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development. Plant Cell Physiol 54:1711–1723

    Article  PubMed  CAS  Google Scholar 

  • Takos A, Lai D, Mikkelsen L, Hachem MA, Shelton D, Bak S, Motawia MS, Olsen CE, Møller BL, Wang TL, Martin C, Rook F (2010) Genetic screening identifies cyanogenesis deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism. Plant Cell 22:1605–1619

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Takos AM, Knudsen C, Lai D, Kannangara R, Mikkelsen L, Motawia MS, Olsen CE, Sato S, Tabata S, Jørgensen K, Møller BL, Rook F (2011) Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. Plant J 68:273–286

    Article  PubMed  CAS  Google Scholar 

  • Tirichine L, Sandal N, Madsen LH, Radutoiu, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104-107

    Google Scholar 

  • Tsikou D, Stedel C, Kouri ED, Udvardi MK, Wang TL, Katinakis P, Labrou NE, Flemetakis E (2011) Characterization of two novel nodule-enhanced α-type carbonic anhydrases from Lotus japonicus. Biochim Biophys Acta 1814:496–504

    Article  PubMed  CAS  Google Scholar 

  • Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucl Acids Res 40:e115. doi:10.1093/nar/gks596

    Article  Google Scholar 

  • Van Arten AM (1998) Mutation breeding. Cambridge University Press, Cambridge, Theoretical and practical applications

    Google Scholar 

  • Volpe V, Dell’Aglio E, Bonfante P (2013) The Lotus japonicus MAMI gene links root development, arbuscular mycorrhizal symbiosis and phosphate availability. Plant Signal Behav 8:e23414. doi:10.4161/psb.23414

    Article  PubMed  PubMed Central  Google Scholar 

  • Vriet C, Welham T, Brachmann A, Pike M, Pike J, Perry J, Parniske M, Sato S, Tabata S, Smith AM, Wang TL (2010) A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism. Plant Physiol 154:643–655

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang TL, Uauy C, Robson F, Till B (2012) TILLING in extremis. Plant Biotech J 10:761–772

    Article  CAS  Google Scholar 

  • Welham T, Pike J, Horst I, Flemetakis E, Katinakis P, Kaneko T, Sato S, Tabata S, Perry J, Parniske M, Wang TL (2009) A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus. J Exp Bot 60:3353–3365

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yano K, Yoshida S, Müller J, Singh S, Imaizumi-Anraku H, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Perry J, Wang TL, Kawaguchi M, Hayashi M, Parniske M (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Nat Acad Sci 105:20540–20545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor L. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, T.L., Robson, F. (2014). TILLING in Lotus japonicus . In: Tabata, S., Stougaard, J. (eds) The Lotus japonicus Genome. Compendium of Plant Genomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44270-8_21

Download citation

Publish with us

Policies and ethics