Skip to main content

Wild Accessions and Mutant Resources

  • Chapter
  • First Online:
The Lotus japonicus Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 1085 Accesses

Abstract

Lotus japonicus, Lotus burttii, and Lotus filicaulis are species of Lotus genus that are utilized for molecular genetic analysis such as the construction of a linkage map and QTL analysis. Among them, a number of mutants have been isolated from two wild accessions: L. japonicus Gifu B-129 and Miyakojima MG-20. Here, we show the wild accessions and a list of all mutants isolated so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barykina RP, Kramina TE (2006) A comparative morphological and anatomical study of the model legume Lotus japonicus and related species. Wulfenia 13:33–56

    Google Scholar 

  • Betti M, Arcondeguy T, Marquez AJ (2006) Molecular analysis of two mutants from Lotus japonicus deficient in plastidic glutamine synthetase: functional properties of purified GLN2 enzymes. Planta 224:1068–1079

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P, Genre A, Faccio A et al (2000) The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells. Mol Plant Microbe Interact 13:1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Borsos O, Somaroo BH, Grant WF (1972) A new diploid species of Lotus (Leguminosae) in Pakistan. Can J Bot 50:1865–1870

    Article  Google Scholar 

  • Chen JH, Pang JL, Wang LL et al (2006) Wrinkled petals and stamens 1, is required for the morphogenesis of petals and stamens in Lotus japonicus. Cell Res 16:499–506

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Zhu H, Ke DX et al (2012) A MAP kinase kinase interacts with SymRK and regulates nodule organogenesis in Lotus japonicus. Plant Cell 24:823–838

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • de Alvarez NDG, Meeking RJ, White DWR et al (2006) The origin, initiation and development of axillary shoot meristems in Lotus japonicus. Ann Bot 98:953–963

    Google Scholar 

  • Dong ZC, Zhao Z, Liu CW et al (2005) Floral patterning in Lotus japonicus. Plant Physiol 137:1272–1282

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Feng XZ, Zhao Z, Tian ZX et al (2006) Control of petal shape and floral zygomorphy in Lotus japonicus. Proc Natl Acad Sci USA 103:4970–4975

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • García-Calderón M, Chiurazzi M, Espuny MR et al (2012) Photorespiratory metabolism and nodule function: behavior of Lotus japonicus mutants deficient in plastid glutamine synthetase. Mol Plant Microbe Interact 25:211–219

    Article  PubMed  Google Scholar 

  • Grant WF, Bullen MR, de Nettancourt D (1962) The cytognetics of Lotus. I Embryo-cultured interspecific diploid hybrids closely related to L. corniculatus L. Can J Genet Cytol 4:105–128

    Google Scholar 

  • Groth M, Takeda N, Perry J et al (2010) NENA, a Lotus japonicus homolog of Sec13, is required for Rhizodermal infection by Arbuscular Mycorrhiza Fungi and Rhizobia but dispensable for cortical endosymbiotic development. Plant Cell 22:2509–2526

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Groth M, Kosuta S, Gutjahr C et al (2013) Two Lotus japonicus symbiosis mutants impaired at distinct steps of arbuscule development. Plant J 75:117–129

    Article  PubMed  CAS  Google Scholar 

  • Hakoyama T, Niimi K, Watanabe H et al (2009) Host plant genome overcomes the lack of a bacterial gene for symbiotic nitrogen fixation. Nature 462:514–517

    Article  PubMed  CAS  Google Scholar 

  • Hakoyama T, Niimi K, Yamamoto T et al (2012a) The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. Plant Cell Physiol 53:225–236

    Article  PubMed  CAS  Google Scholar 

  • Hakoyama T, Oi R, Hazuma K et al (2012b) The SNARE Protein SYP71 expressed in vascular tissues is involved in symbiotic nitrogen fixation in Lotus japonicus nodules. Plant Physiol 160:897–905

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hayashi M, Miyahara A, Sato S et al (2001) Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. DNA Res 8:301–310

    Article  PubMed  CAS  Google Scholar 

  • Heckmann AB, Lombardo F, Miwa H et al (2006) Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol 142:1739–1750

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Horst I, Welham T, Kelly S et al (2007) TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase. Plant Physiol 144:806–820

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hossain MS, Umehara Y, Kouchi H (2006) A novel Fix(−) symbiotic mutant of Lotus japonicus, Ljsym105, shows impaired development and premature deterioration of nodule infected cells and symbiosomes. Mol Plant Microbe Interact 19:780–788

    Article  PubMed  CAS  Google Scholar 

  • Hossain MS, Liao JQ, James EK et al (2012) Lotus japonicus ARPC1 is required for rhizobial infection. Plant Physiol 160:917–928

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Imaizumi-Anraku H, Kawaguchi M, Koiwa H et al (1997) Two ineffective-nodulating mutants of Lotus japonicus—Different phenotypes caused by the blockage of endocytotic bacterial release and nodule maturation. Plant Cell Physiol 38:871–881

    Article  CAS  Google Scholar 

  • Imaizumi-Anraku H, Takeda N, Charpentier M et al (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–531

    Article  PubMed  CAS  Google Scholar 

  • Kanamori N, Madsen LH, Radutoiu S et al (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci USA 103:359–364

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karas B, Murray J, Gorzelak M et al (2005) Invasion of Lotus japonicus root hairless 1 by Mesorhizobium loti involves the nodulation factor-dependent induction of root hairs. Plant Physiol 137:1331–1344

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karas B, Amyot L, Johansen C et al (2009) Conservation of Lotus and Arabidopsis basic helix-loop-helix proteins reveals new players in root hair development. Plant Physiol 151:1175–1185

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kawaguchi M (2000) Lotus japonicus “Miyakojima” MG-20: an early flowering accession suitable for indoor handling. J Plant Res 113:507–509

    Article  Google Scholar 

  • Kawaguchi M (2003) SLEEPLESS, a gene conferring nyctinastic movement in legume. J Plant Res 116:151–154

    PubMed  Google Scholar 

  • Kawaguchi M, Imaizumi-Anraku H, Koiwa H et al (2002) Root, root hair, and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 15:17–26

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi M, Pedorosa-Harand A, Yano K et al (2005) Lotus burttii take a position of the third corner in the Lotus molecular genetics triangle. DNA Res 12:69–77

    Article  PubMed  CAS  Google Scholar 

  • Kistner C, Winzer T, Pitzschke A et al (2005a) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17:2217–2229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kistner C, Winzer T, Pitzschke A et al (2005b) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17:2217–2229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kosuta S, Held M, Hossain MS et al (2011) Lotus japonicus symRK-14 uncouples the cortical and epidermal symbiotic program. Plant J 67:929–940

    Article  PubMed  CAS  Google Scholar 

  • Krusell L, Madsen LH, Sato S et al (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420:422–426

    Article  PubMed  CAS  Google Scholar 

  • Krusell L, Krause K, Ott T et al (2005) The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17:1625–1636

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krusell L, Sato N, Fukuhara I et al (2011) The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. Plant J 65:861–871

    Article  PubMed  CAS  Google Scholar 

  • Kumagai H, Hakoyama T, Umehara Y et al (2007) A novel ankyrin-repeat membrane protein, IGN1, is required for persistence of nitrogen-fixing symbiosis in root nodules of Lotus japonicus. Plant Physiol 143:1293–1305

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Madsen EB, Madsen LH, Radutoiu S et al (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640

    Article  PubMed  CAS  Google Scholar 

  • Maekawa-Yoshikawa M, Muller J, Takeda N (2009) The temperature-sensitive brush mutant of the legume Lotus japonicus reveals a link between root development and nodule infection by rhizobia. Plant Physiol 149:1785–1796

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Magori S, Oka-Kira E, Shibata S et al (2009) TOO MUCH LOVE, a root regulator associated with the long-distance control of nodulation in Lotus japonicus. Mol Plant Microbe Interact 22:259–268

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa H, Oka-Kira E, Sato N et al (2010) The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in Lotus japonicus. Development 137:4317–4325

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Miwa H, Imaizumi-Anraku H et al (2006) Positional cloning identifies Lotus japonicus NSP2, a putative transcription factor of the GRAS Family, required for NIN and ENOD40 Gene expression in nodule initiation. DNA Res 13:255–265

    Article  PubMed  CAS  Google Scholar 

  • Murray J, Karas B, Ross L et al (2006) Genetic suppressors of the Lotus japonicus har1-1 hypernodulation phenotype. Mol Plant Microbe Interact 19:1082–1091

    Article  PubMed  CAS  Google Scholar 

  • Murray JD, Karas BJ, Sato S et al (2007) A cytokinin perception mutant colonized by rhizobium in the absence of nodule organogenesis. Science 315:101–104

    Article  PubMed  CAS  Google Scholar 

  • Nishimura R, Hayashi M, Wu GJ et al (2002a) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429

    Article  PubMed  CAS  Google Scholar 

  • Nishimura R, Ohmori M, Kawaguchi M (2002b) The novel symbiotic phenotype of enhanced-nodulating mutant of Lotus japonicus: astray mutant is an early nodulating mutant with wider nodulation zone. Plant Cell Physiol 43:853–859

    Article  PubMed  CAS  Google Scholar 

  • Nishimura R, Ohmori M, Fujita H et al (2002c) A Lotus basic leucine zipper protein with a RING-finger motif negatively regulates the developmental program of nodulation. Proc Natl Acad Sci USA 99:15206–15210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Oreo A, Pajuelo P, Pajuelo E et al (2002) Isolation of photorespiratory mutants from Lotus japonicus deficient in glutamine synthetase. Physiol Plant 115:352–361

    Article  Google Scholar 

  • Perry JA, Wang TL, Welham TJ et al (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131:866–871

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Perry J, Brachmann A, Welham T et al (2009) TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective ethyl methanesulfonate alleles toward glycine replacements. Plant Physiol 151:1281–1291

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Radutoiu S, Madsen LH, Madsen EB et al (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Yoshikawa M, Yano K et al (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 19:610–624

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sandal N, Krusell L, Radutoiu S et al (2002) A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci. Genetics 161:1673–1683

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sandal N, Petersen TR, Murray J et al (2006) Genetics of symbiosis in Lotus japonicus: recombinant inbred lines, comparative genetic maps, and map position of 35 symbiotic loci. Mol Plant Microbe Interact 19:80–91

    Article  PubMed  CAS  Google Scholar 

  • Sandal N, Jin H, Rodriguez-Navarro DN et al (2012) A set of Lotus japonicus gifu x Lotus burttii recombinant inbred lines facilitates map-based cloning and QTL mapping. DNA Res 19:317–323

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schauser K, Handberg N, Sandal J et al (1998) Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol Gen Genet 259:414–423

    Article  PubMed  CAS  Google Scholar 

  • Schauser L, Roussis A, Stiller J et al (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195

    Article  PubMed  CAS  Google Scholar 

  • Senoo K, Solaiman MZ, Kawaguchi M et al (2000) Isolation of two different phenotypes of mycorrhizal mutants in the model legume plant Lotus japonicus after EMS-treatment. Plant Cell Physiol 41:726–732

    Article  PubMed  CAS  Google Scholar 

  • Stracke S, Kistner C, Yoshida S et al (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  PubMed  CAS  Google Scholar 

  • Suganuma N, Nakamura Y, Yamamoto M et al (2003) The Lotus japonicus Sen1 gene controls rhizobial differentiation into nitrogen-fixing bacteroids in nodules. Mol Genet Genomics 269:312–320

    Article  PubMed  CAS  Google Scholar 

  • Suzaki T, Yano K, Ito M et al (2012) Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response. Development 139:3997–4006

    Article  PubMed  CAS  Google Scholar 

  • Suzaki T, Kim CS, Takeda N et al (2013) TRICOT encodes an AMP1-related carboxypeptidase that regulates root nodule development and shoot apical meristem maintenance in Lotus japonicus. Development 140:353–361

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Suriyagoda L, Shigeyama T et al (2011) Lotus japonicus nodulation is photomorphogenetically controlled by sensing the red/far red (R/FR) ratio through jasmonic acid (JA) signaling. Proc Natl Acad Sci USA 108:16837–16842

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Szczyglowski K, Shaw RS, Wopereis J et al (1998) Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 11:684–697

    Article  CAS  Google Scholar 

  • Takahara M, Magori S, Soyano T et al (2013) TOO MUCH LOVE, a Novel Kelch repeat-containing F-box Protein, functions in the long-distance regulation of the legume-rhizobium symbiosis. Plant Cell Physiol 54:433–447

    Article  PubMed  CAS  Google Scholar 

  • Takeda N, Tsuzuki S, Suzaki T et al (2013) CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development. Plant Cell Physiol 54:1711–1723

    Article  PubMed  CAS  Google Scholar 

  • Takos A, Lai D, Mikkelsen L et al (2010) Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism. Plant Cell 22:1605–1619

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Takos AM, Knudsen C, Lai D et al (2011) Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. Plant J 68:273–286

    Article  PubMed  CAS  Google Scholar 

  • Tansengco ML, Hayashi M, Kawaguchi M et al (2003) Crinkle, a novel symbiotic mutant that affects the infection thread growth and alters the root hair, trichome, and seed development in Lotus japonicus. Plant Physiol 131:1054–1063

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tirichine L, Imaizumi-Anraku H, Yoshida S et al (2006a) Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441:1153–1156

    Article  PubMed  CAS  Google Scholar 

  • Tirichine L, James EK, Sandal N et al (2006b) Spontaneous root-nodule formation in the model legume Lotus japonicus: a novel class of mutants nodulates in the absence of rhizobia. Mol Plant Microbe Interact 19:373–382

    Article  PubMed  CAS  Google Scholar 

  • Tirichine L, Sandal N, Madsen LH (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107

    Article  PubMed  CAS  Google Scholar 

  • Tominaga A, Nagata M, Futsuki K et al (2009) Enhanced nodulation and nitrogen fixation in the abscisic acid low-sensitive mutant enhanced nitrogen fixation1 of Lotus japonicus. Plant Physiol 151:1965–1976

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vriet C, Welham T, Brachmann A et al (2010) A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism. Plant Physiol 154:643–655

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Z, Chen J, Weng L et al (2013) Multiple components are integrated to determine leaf complexity in Lotus japonicus. J Integr Plant Biol 55:419–433

    Google Scholar 

  • Yan J, Cai X, Luo J et al (2010) The REDUCED LEAFLET genes encode key components of the trans-acting small interfering RNA pathway and regulate compound leaf and flower development in Lotus japonicus. Plant Physiol 152:797–807

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yano K, Tansengco ML, Hio T et al (2006) New nodulation mutants responsible for infection thread development in Lotus japonicus. Mol Plant Microbe Interact 19:801–810

    Article  PubMed  CAS  Google Scholar 

  • Yano K, Yoshida S, Muller J et al (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci USA 105:20540–20545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yano K, Shibata S, Chen WL et al (2009) CERBERUS, a novel U-box protein containing WD-40 repeats, is required for formation of the infection thread and nodule development in the legume–Rhizobium symbiosis. Plant J 60:168–180

    Article  PubMed  CAS  Google Scholar 

  • Yokota K, Fukai E, Madsen LH et al (2009) Rearrangement of actin cytoskeleton mediates invasion of Lotus japonicus roots by Mesorhizobium loti. Plant Cell 21:267–284

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yoshida C, Funayama-Noguchi S, Kawaguchi M (2010) Plenty, a novel hypernodulation mutant in Lotus japonicus. Plant Cell Physiol 51:1425–1435

    Article  PubMed  CAS  Google Scholar 

  • Zhang SL, Sandal N, Polowick PL (2003) Proliferating Floral Organs (Pfo), a Lotus japonicus gene required for specifying floral meristem determinacy and organ identity, encodes an F-box protein. Plant J 33:607–619

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Kawaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kawaguchi, M., Sandal, N. (2014). Wild Accessions and Mutant Resources. In: Tabata, S., Stougaard, J. (eds) The Lotus japonicus Genome. Compendium of Plant Genomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44270-8_19

Download citation

Publish with us

Policies and ethics