Skip to main content

Genes Involved in Pathogenesis and Defense Responses

  • Chapter
  • First Online:
Book cover The Lotus japonicus Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The legume family includes important grain, forage, and agroforestry species. One of the major constraints for cultivation of these legumes is obviously production loss by disease (Graham and Vance in Plant Physiol 131(3):872–877, 2003). Thus, Lotus japonicus is utilized not only as a symbiotic model but also as a research platform for studying serious diseases in legumes. However, most of our knowledge about the defense mechanism in L. japonicus comes from the study of legume–rhizobia symbiosis. In this section, we mainly focus on the regulation of defense responses in host symbiotic process, the pathogenic aspect of symbiotic microbial partners, and then illustrate the Lotus pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alippi A (2005) Bacterial diseases of Lotus spp. Lotus Newslett 35(1):17–18

    Google Scholar 

  • Ausmees N, Kobayashi H, Deakin WJ, Marie C, Krishnan HB, Broughton WJ, Perret X (2004) Characterization of NopP, a type III secreted effector of Rhizobium sp. strain NGR234. J Bacteriol 186(14):4774–4780

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bartsev AV, Deakin WJ, Boukli NM, McAlvin CB, Stacey G, Malnoë P, Broughton WJ, Staehelin C (2004) NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol 134(2):871–879

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51(Pt 5):1729–1735

    Google Scholar 

  • Christie PJ, Vogel JP (2000) Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8(8):354–360

    Article  PubMed  CAS  Google Scholar 

  • Cullimore JV, Ranjeva R, Bono JJ (2001) Perception of lipo-chitooligosaccharidic Nod factors in legumes. Trends Plant Sci 6(1):24–30

    Article  PubMed  CAS  Google Scholar 

  • Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7(4):312–320

    PubMed  CAS  Google Scholar 

  • Deakin WJ, Marie C, Saad MM, Krishnan HB, Broughton WJ (2005) NopA is associated with cell surface appendages produced by the type III secretion system of Rhizobium sp. strain NGR234. Mol Plant Microbe Interact 18(5):499–507

    Article  PubMed  CAS  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11(8):539–548

    Article  PubMed  CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18(3):265–276

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5(6):1003–1011

    Article  PubMed  CAS  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131(3):872–877

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hayashi M, Saeki Y, Haga M, Harada K, Kouchi H, Umehara Y (2012) Rj (rj) genes involved in nitrogen-fixing root nodule formation in soybean. Breed Sci 61(5):544–553

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heidrich K, Blanvillain-Baufume S, Parker JE (2012) Molecular and spatial constraints on NB-LRR receptor signaling. Curr Opin Plant Biol 15(4):385–391

    Article  PubMed  CAS  Google Scholar 

  • Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62(2):379–433

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  PubMed  CAS  Google Scholar 

  • Kambara K, Ardissone S, Kobayashi H, Saad MM, Schumpp O, Broughton WJ, Deakin WJ (2009) Rhizobia utilize pathogen-like effector proteins during symbiosis. Mol Microbiol 71(1):92–106

    Article  PubMed  CAS  Google Scholar 

  • Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M (2010) How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol 51(9):1381–1397

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krause A, Doerfel A, Göttfert M (2002) Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol Plant Microbe Interact 15(12):1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Gomez M, Sandal N, Stougaard J, Boller T (2012) Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J Exp Bot 63(1):393–401

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marie C, Deakin WJ, Viprey V, Kopciñska J, Golinowski W, Krishnan HB, Perret X, Broughton WJ (2003) Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Mol Plant Microbe Interact 16(9):743–751

    Article  PubMed  CAS  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104(49):19613–19618

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15(4):349–357

    Article  PubMed  CAS  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411(6840):948–950

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Kaku H, Shimoda Y, Sugiyama A, Shimamura M, Takanashi K, Yazaki K, Aoki T, Shibuya N, Kouchi H (2011) From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume-Rhizobium symbiosis. Plant J 65(2):169–180

    Article  PubMed  CAS  Google Scholar 

  • Okazaki S, Okabe S, Higashi M, Shimoda Y, Sato S, Tabata S, Hashiguchi M, Akashi R, Gottfert M, Saeki K (2010) Identification and functional analysis of type III effector proteins in Mesorhizobium loti. Mol Plant Microbe Interact 23(2):223–234

    Article  PubMed  CAS  Google Scholar 

  • Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R (1999) High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol 32(2):415–425

    Article  PubMed  CAS  Google Scholar 

  • Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425(6958):585–592

    Article  PubMed  CAS  Google Scholar 

  • Saad MM, Kobayashi H, Marie C, Brown IR, Mansfield JW, Broughton WJ, Deakin WJ (2005) NopB, a type III secreted protein of Rhizobium sp. strain NGR234, is associated with pilus-like surface appendages. J Bacteriol 187(3):1173–1181

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sánchez C, Iannino F, Deakin WJ, Ugalde RA, Lepek VC (2009) Characterization of the Mesorhizobium loti MAFF303099 type-three protein secretion system. Mol Plant Microbe Interact 22(5):519–528

    Article  PubMed  Google Scholar 

  • Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402(6758):191–195

    Article  PubMed  CAS  Google Scholar 

  • Schumpp O, Ramel ME, Gugerli P, Broughton WJ, Deakin WJ (2007) Identification of a Lotus viral pathogen. J Plant Res 120(5):651–654

    Article  PubMed  CAS  Google Scholar 

  • Segonzac C, Zipfel C (2011) Activation of plant pattern-recognition receptors by bacteria. Curr Opin Microbiol 14(1):54–61

    Article  PubMed  CAS  Google Scholar 

  • Shao F, Golstein C, Ade J, Stoutemyer M, Dixon JE, Innes RW (2003) Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Sci Signal 301(5637):1230

    CAS  Google Scholar 

  • Shimada N, Sato S, Akashi T, Nakamura Y, Tabata S, Ayabe S, Aoki T (2007) Genome-wide analyses of the structural gene families involved in the legume-specific 5-deoxyisoflavonoid biosynthesis of Lotus japonicus. DNA Res 14(1):25–36

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64(2):204–214

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sisterna M, Lori GA (2005) Fungal diseases on Lotus spp in Argentina. Lotus Newslett 35(1):15–16

    Google Scholar 

  • Skorpil P, Saad MM, Boukli NM, Kobayashi H, Ares-Orpel F, Broughton WJ, Deakin WJ (2005) NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Mol Microbiol 57(5):1304–1317

    Article  PubMed  CAS  Google Scholar 

  • Spaink HP (1995) The molecular basis of infection and nodulation by rhizobia: the ins and outs of sympathogenesis. Annu Rev Phytopathol 33(1):345–368

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Tomioka K, Kouchi H, Nakagawa T, Kaku H (2007) A novel pathosystem to study the interactions between Lotus japonicus and Fusarium solani. J Gen Plant Pathol 73:336–341

    Article  Google Scholar 

  • Tsukui T, Eda S, Kaneko T, Sato S, Okazaki S, Kakizaki-Chiba K, Itakura M, Mitsui H, Yamashita A, Terasawa K (2013) The Type III Secretion System of Bradyrhizobium japonicum USDA122 mediates symbiotic incompatibility with Rj2 soybean plants. Appl Environ Microbiol 79(3):1048–1051

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vandamme P, Goris J, Chen WM, de Vos P, Willems A (2002) Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25(4):507–512

    Article  PubMed  Google Scholar 

  • Velazquez E, Peix A, Zurdo-Pineiro JL, Palomo JL, Mateos PF, Rivas R, Munoz-Adelantado E, Toro N, Garcia-Benavides P, Martinez-Molina E (2005) The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hairy roots in plants. Mol Plant Microbe Interact 18(12):1325–1332

    Article  PubMed  CAS  Google Scholar 

  • Viboud GI, Bliska JB (2005) Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59:69–89

    Article  PubMed  CAS  Google Scholar 

  • Viprey V, Del Greco A, Golinowski W, Broughton WJ, Perret X (1998) Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 28(6):1381–1389

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Tang F, Gao M, Krishnan HB, Zhu H (2010) R gene-controlled host specificity in the legume-rhizobia symbiosis. Proc Natl Acad Sci USA 107(43):18735–18740

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zehner S, Schober G, Wenzel M, Lang K, Göttfert M (2008) Expression of the Bradyrhizobium japonicum type III secretion system in legume nodules and analysis of the associated tts box promoter. Mol Plant Microbe Interact 21(8):1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Zhang XC, Wu X, Findley S, Wan J, Libault M, Nguyen HT, Cannon SB, Stacey G (2007) Molecular evolution of lysin motif-type receptor-like kinases in plants. Plant Physiol 144(2):623–636

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu H, Riely BK, Burns NJ, Ane JM (2006) Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses. Genetics 172(4):2491–2499

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomomi Nakagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nakagawa, T., Okazaki, S., Shibuya, N. (2014). Genes Involved in Pathogenesis and Defense Responses. In: Tabata, S., Stougaard, J. (eds) The Lotus japonicus Genome. Compendium of Plant Genomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44270-8_15

Download citation

Publish with us

Policies and ethics