Skip to main content

Background and History of the Lotus japonicus Model Legume System

  • Chapter
  • First Online:
  • 1148 Accesses

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The combination of favourable biological features, stable transformation procedures, application of genetics and genome-based global approaches has established Lotus japonicus as a model legume and provided a platform for addressing important biological questions often, but not exclusively, focusing on endosymbiosis. Several important discoveries have been made, and the Lotus community has contributed novel results, promoting our understanding of plant biology as well as our understanding of properties and characteristics typical for plants belonging to the legume family. Progress has been fast since L. japonicus was first promoted as a model plant yet there are many challenges for the coming years. This introductory chapter will set the stage for some of these challenges, while possibilities and challenges emerging from specific research projects will be addressed in the chapters that follow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvarez NDG, Meeking RJ, White DRW (2006) The origin, initiation and development of axillary shoot meristems in Lotus japonicus. Ann Bot 98:953–963

    Article  CAS  PubMed Central  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in Angiosperms. Phil Trans Royal Soc B 274:224–274

    Article  Google Scholar 

  • Borisov AY, Danilova TN, Koroleva TA et al (2007) Regulatory genes of garden pea (Pisum sativum L.) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: a review of basic and applied aspects. Appl Biochem Microbiol 43(3):237–243

    Article  CAS  Google Scholar 

  • Borisov AY, Madsen LH, Tsyganov VE et al (2003) The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus. Plant Phys 131:1009–1017

    Article  CAS  Google Scholar 

  • Cheng RI-J, Grant WF (1973) Species relationships in the Lotus corniculatus group as determined by karyotype and cytophotometric analysis. Can J Genet Cytol 15:101–115

    CAS  Google Scholar 

  • Clemente MR, Bustos-Sanmamed P, Loscos J et al (2012) Thiol synthetases of legumes: immunogold localization and differential regulation by phytohormones. J Exp Botany 63(10):3923–3934

    Article  CAS  Google Scholar 

  • Credali A, Garcia-Calderon M, Dam S et al (2013) The K+-dependent asparaginase, NSE1, is crucial for plant growth and seed production in Lotus japonicus. Plant Cell Physiol 54(1):107–118

    Article  PubMed  CAS  Google Scholar 

  • De Luis A, Markmann K, Cognat V et al (2012) Two MicroRNAs linked to nodule infection and nitrogen-fixing ability in the legume Lotus japonicus. Plant Phys 160:2137–2154

    Article  Google Scholar 

  • Dam S, Laursen BS, Ørnfelt JH et al (2009) The proteome of seed development in the model legume Lotus japonicus. Plant Phys 149:1325–1340

    Article  CAS  Google Scholar 

  • Desbrosses GJ, Stougaard J (2011) Root nodulation: a paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe 10:348–358

    Article  PubMed  CAS  Google Scholar 

  • Fukai E, Umehara Y, Sato S et al (2010) Derepression of the plant chromovirus LORE1 induces germline transposition in regenerated plants. PloS Genet 6(3):e1000868

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukai E, Soyano T, Umehara U et al (2012) Establishment of a Lotus japonicus gene tagging population using the exon-targeting endogenous retrotransposon LORE1. Plant J 69:720–730

    Article  PubMed  CAS  Google Scholar 

  • Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2(4):487–496

    Article  Google Scholar 

  • Hansen J, Jørgensen J-E, Stougaard J et al (1989) Hairy roots—a short cut to transgenic root nodules. Plant Cell Rep 8:12–15

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka Y, Ueda H, Sugimoto Y (2009) Molecular responses of Lotus japonicus to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica. J Exp Botany 60(2):641–650

    Article  CAS  Google Scholar 

  • Kai S, Tanaka H, Hashiguchi M et al (2010) Analysis of genetic diversity and morphological traits of Japanese Lotus japonicus for establishment of a core collection. Breeding Science 60:436–446

    Article  Google Scholar 

  • Kistner C, Winzer T, Pitzschke A et al (2005) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17:2217–2229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kouchi H, Imaizumi-Anraku H, Hayashi M et al (2010) How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol 51(9):1381–1397

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kumagai H, Kinoshita E, Ridge RW et al (2006) RNAi knock-down of ENOD40s leads to significant suppression of nodule formation in Lotus japonicus. Plant Cell Physiol 47(8):1102–1111

    Article  PubMed  CAS  Google Scholar 

  • Larsen K (1955) Cyto-taxonomical studies in Lotus II. Somatic chromosomes and chromosome numbers. Botanisk Tidsskrift 52:8–17

    Google Scholar 

  • Lohar DP, Schuller K, Buzas DM et al (2001) Transformation of Lotus japonicus using the herbicide resistance bar gene as selectable marker. J Exp Bot 52(361):1697–1702

    Article  PubMed  CAS  Google Scholar 

  • Lombari P, Ercolano E, El Alaouni H et al (2003) A new transformation-regeneration procedure in the model legume Lotus japonicus: root explants as a source of large numbers of cells susceptible to Agrobacterium-mediated transformation. Plant Cell Rep 21:771–777

    PubMed  CAS  Google Scholar 

  • Lui J, Novero M, Charnikhova T et al (2013) CAROTENOID CLEAVAGE DIOXYGENASE 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. J Exp Biol 64(7):1967–1981

    Google Scholar 

  • Madsen EB, Madsen LH, Radutoiu S et al (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640

    Article  PubMed  CAS  Google Scholar 

  • Madsen LH, Tirichine L, Jurkiewicz A et al (2010) The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nature Comms 10. doi:10.1038/ncomms1009

  • Magori S, Oka-Kira E, Shibata S et al (2009) TOO MUCH LOVE, a root regulator associated with the long-distance control of nodulation in Lotus japonicus. MPMI 22(3):259–268

    Article  PubMed  CAS  Google Scholar 

  • Novero M, Faccio A, Genre A et al (2002) Dual requirements of the LjSym4 gene for mycorrhizal development in epidermal and cortical cells of Lotus japonicus roots. New Phytol 154:741–749

    Article  CAS  Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Rev Microbiol 11:252–263

    Article  CAS  Google Scholar 

  • Perez-Delgado CM, Garcia-Calderon M, Sanchez DH et al (2013) Transcriptomic and metabolic changes associated to photorespiratory ammonium accumulation in the model legume Lotus japonicus. Plant Phys 162(4):1834–1848

    Article  CAS  Google Scholar 

  • Perry J, Brachmann A, Welham T et al (2009) TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective ethyl methanesulfonate alleles toward glycine replacements. Plant Phys 151:1281–1291

    Article  CAS  Google Scholar 

  • Poch HLC, Lopez RHM, Clark SJ (2007) Ecotypes of the model legume Lotus japonicus vary in their interaction phenotypes with the root-knot nematode Meloidogyne incognita. Ann Bot 99:1223–1229

    Article  PubMed  PubMed Central  Google Scholar 

  • Radutoiu S, Madsen LH, Madsen EB et al (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592

    Article  PubMed  CAS  Google Scholar 

  • Reid JB, Ross JJ (2011) Mendel’s genes: towards a full molecular characterization. Genetics 189:3–10

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sandal N, Petersen TR, Murray J et al (2006) Genetics of symbiosis in Lotus japonicus: recombinant inbred lines, comparative genetic maps, and map position of 35 symbiotic loci. MPMI 19(1):80–91

    Article  PubMed  CAS  Google Scholar 

  • Soyano T, Kouchi H, Hirota A et al (2013) NODULE INCEPTION directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genet 9(3):e1003352

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stougaard J (1993) Substrate-dependent negative selection in plants using a bacterial cytosine deaminase gene. Plant J 3(5):755–761

    Article  CAS  Google Scholar 

  • Stougaard Jensen J, Marcker KA, Otten L et al (1986) Nodule specific expression of a chimaeric soybean leghaemoglobin gene in transgenic Lotus corniculatus. Nature 321(6071):669–674

    Article  Google Scholar 

  • Stougaard J, Abildsten D, Marcker KA (1987) The Agrobacterium rhizogenes pRi TL-DNA segment as a gene vector system for transformation of plants. Mol Gen Genet 207:251–255

    Article  CAS  Google Scholar 

  • Stougaard J, Jørgensen J-E, Christensen T et al (1990) Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin lbc3 and N23 gene promoters. Mol Gen Genet 220:353–360

    Article  PubMed  CAS  Google Scholar 

  • Takahara M, Magori S, Soyano T et al (2013) TOO MUCH LOVE, a novel Kelch repeat-containing F-box protein, functions in the long-distance regulation of the legume-Rhizobium symbiosis. Plant Cell Phys 54(4):433–447

    Article  CAS  Google Scholar 

  • Tsyganov VE, Voroshilova VA, Priefer UB et al (2002) Genetic dissection of the initiation of the infection process and nodule tissue development in the Rhizobium-pea (Pisum sativum L.) symbiosis. Ann Bot 89:357–366

    Article  PubMed  CAS  Google Scholar 

  • Urbanski DF, Malolepszy A, Stougaard J et al (2012) Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in Lotus japonicus. Plant J 69:731–741

    Article  PubMed  CAS  Google Scholar 

  • Vriet C, Welham T, Brachmann A et al (2010) A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism. Plant Phys 154:643–655

    Article  CAS  Google Scholar 

  • Weerasinghe RR, Bird DMcK, Allen N (2005) Root-knot nematodes and bacterial Nod factors elicit common signal transduction events in Lotus japonicus. Proc Natl Acid Sci USA 102(8):3147–3152

    Article  CAS  Google Scholar 

  • Xu S, Luo Y, Cai Z et al (2013) Functional diversity of CYCLOIDEA-like TCP genes in the control of zygomorphic flower development in Lotus japonicus. J Intgr Plant Biol 55(3):221–231

    Article  CAS  Google Scholar 

  • Zagrobelsky M, Bak S, Ekstrøm CT et al (2007) The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles. Insect Biochem Mol Biol 37(1):10–18

    Article  Google Scholar 

  • Zhukov V, Radutoiu S, Madsen LH et al (2008) The pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development. MPMI 21(12):1600–1608

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Danish National Research Foundation grant no. DNRF79 and the ERC Advanced Grant 268523.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Stougaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stougaard, J. (2014). Background and History of the Lotus japonicus Model Legume System. In: Tabata, S., Stougaard, J. (eds) The Lotus japonicus Genome. Compendium of Plant Genomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44270-8_1

Download citation

Publish with us

Policies and ethics