Advertisement

Edge Localized Mode (ELM)

  • Yunfeng Liang
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 83)

Abstract

The next generation of fusion machines like ITER and DEMO will need a reliable method for controlling the periodic transient expulsion of a considerable amount of energy onto the plasma-facing components caused by instabilities at the plasma edge. The good plasma confinement in these tokamak devices will result in a steepened pressure profile at the plasma edge. When the pressure gradient exceeds a critical value, so-called edge- localized modes (ELMs) are destabilized. These modes feature a periodic fast collapse of the edge pressure, a sudden loss of the confinement, and a subsequent release of heat and particles onto plasma-facing components. The associated transient heat loads might cause excess erosion and lead to a strong reduction of the plasma-facing component lifetime. In this chapter, an overview of recent development of several ELM control methods for next-generation tokamaks, e.g., ITER is given. Some key physics issues related to the mechanism of ELM control are discussed.

Keywords

Perturbation Field Plasma Edge Magnetic Perturbation Experimental Advance Superconducting Tokamak Plasma Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Wagner, Phys. Rev. Lett. 49, 1408 (1982)ADSGoogle Scholar
  2. 2.
    ITER Physics Basis, Nucl. Fusion 39, 2137 (1999)ADSGoogle Scholar
  3. 3.
    J.W. Connor, Plasma Phys. Control. Fusion 40, 531 (1998)ADSGoogle Scholar
  4. 4.
    J.A. Snipes, Plasma Phys. Control. Fusion 40, 765 (1998)ADSGoogle Scholar
  5. 5.
    W. Suttrop, Plasma Phys. Control. Fusion 38, 1407 (1996)ADSGoogle Scholar
  6. 6.
    R.J. Buttery et al., in Proceedings of 22nd EPS Conference on Controlled Fusion and Plasma Physics (Bournrmouth), vol. 19C (1995), p. 273Google Scholar
  7. 7.
    P. Gohil, Phys. Rev. Lett. 61, 14 (1988)Google Scholar
  8. 8.
    M. Jiang, Plasma Phys. Control. Fusion 54, 095003 (2012)ADSGoogle Scholar
  9. 9.
    D.C. McDonald, Fusion Sci. Technol. 53, 891 (2008)Google Scholar
  10. 10.
    K. Hagashima, T. Shoji, Y. Miura, Nucl. Fusion 36, 335 (1996)ADSGoogle Scholar
  11. 11.
    N. Oyama, Nucl. Fusion 44, 582 (2004)ADSGoogle Scholar
  12. 12.
    N. Oyama, Nucl. Fusion 45, 871 (2005)ADSGoogle Scholar
  13. 13.
    A. Kirk, J. Nucl. Mater. 313, 1081 (2003)ADSGoogle Scholar
  14. 14.
    R. Maingi, Nucl. Fusion 45, 1066 (2005)ADSGoogle Scholar
  15. 15.
    H. Reimerdes, in Proceedings of 24th EPS Conference on Controlled Fusion and Plasma Physics (Berchtesgaden), vol. 21A (1997), p. 533Google Scholar
  16. 16.
    S. Soldatov, Plasma Phys. Control. Fusion 52, 085001 (2010)ADSGoogle Scholar
  17. 17.
    W. Suttrop, Plasma Phys. Control. Fusion 42, A1 (2000)Google Scholar
  18. 18.
    H. Zohm, Plasma Phys. Control. Fusion 38, 105 (1996)ADSGoogle Scholar
  19. 19.
    A. Loarte, Plasma Phys. Control. Fusion 44, 1815 (2002)ADSGoogle Scholar
  20. 20.
    A. Loarte, J. Nucl. Mater. 313–316, 962 (2003)Google Scholar
  21. 21.
    T. Ozeki, Nucl. Fusion 30, 1425 (1990)Google Scholar
  22. 22.
    J. Stober, Nucl. Fusion 41, 1123 (2001)ADSGoogle Scholar
  23. 23.
    M. Bècoulet, Plasma Phys. Control. Fusion 45, A93 (2003)Google Scholar
  24. 24.
    H.R. Wilson, Plasma Phys. Control. Fusion 48, A71 (2006)ADSGoogle Scholar
  25. 25.
    J. Ongena, Plasma Phys. Control. Fusion 43, A11 (2001)ADSGoogle Scholar
  26. 26.
    G. Saibene, Plasma Phys. Control. Fusion 44, 1769 (2002)ADSGoogle Scholar
  27. 27.
    Y. Kamada, Plasma Phys. Control. Fusion 42, A247 (2000)ADSGoogle Scholar
  28. 28.
    Y. Kamada, Plasma Phys. Control. Fusion 44, A279 (2002)ADSGoogle Scholar
  29. 29.
    G. Saibene, Nucl. Fusion 45, 297 (2005)ADSGoogle Scholar
  30. 30.
    J. Stober, Nucl. Fusion 45, 1213 (2005)ADSGoogle Scholar
  31. 31.
    R. Maingi, J. Nucl. Mater. 337–339, 727–731 (2005)Google Scholar
  32. 32.
    K.H. Burrell, Plasma Phys. Control. Fusion 44, A253 (2002)ADSGoogle Scholar
  33. 33.
    W. Suttrop, Plasma Phys. Control. Fusion 45, 1399 (2003)ADSGoogle Scholar
  34. 34.
    Y. Sakamoto, Plasma Phys. Control. Fusion 46, A299 (2004)Google Scholar
  35. 35.
    W. Suttrop, Nucl. Fusion 45, 721 (2005)ADSGoogle Scholar
  36. 36.
    K.H. Burrell, Nucl. Fusion 49, 085024 (2009)ADSGoogle Scholar
  37. 37.
    M. Greenwald, Phys. Plasma 6, 1943 (1999)ADSGoogle Scholar
  38. 38.
    K. Kamiya, Nucl. Fusion 43, 1214 (2003)ADSGoogle Scholar
  39. 39.
    N. Oyama, Plasma Phys. Control. Fusion 48, A171 (2006)ADSGoogle Scholar
  40. 40.
    E.A. Frieman, Phys. Fluids 16, 1108 (1973)ADSGoogle Scholar
  41. 41.
    J.W. Connor, Phys. Plasmas 5, 2687 (1998)ADSGoogle Scholar
  42. 42.
    J. Manickam, Phys. Fluids B 4, 1901 (1992)ADSGoogle Scholar
  43. 43.
    S.M. Kaye, Nucl. Fusion 30, 2621 (1990)Google Scholar
  44. 44.
    A.J. Webster, C.G. Gimblett, Phys. Rev. Lett. 102, 035003 (2009)ADSGoogle Scholar
  45. 45.
    A.J. Webster, C.G. Gimblett, Phys. Plasmas 16, 082502 (2009)ADSGoogle Scholar
  46. 46.
    G.T.A. Huysmans, Plasma Phys. Control. Fusion 47, 2107 (2005)ADSGoogle Scholar
  47. 47.
    S. Saarelma, Plasma Phys. Control. Fusion 53, 025011 (2011)ADSGoogle Scholar
  48. 48.
    H.R. Wilson, S.C. Cowley, Phys. Rev. Lett. 92, 175006 (2004)ADSGoogle Scholar
  49. 49.
    A. Kirk, Plasma. Phys. Control. Fusion 46, 551 (2004)MathSciNetADSGoogle Scholar
  50. 50.
    A. Kirk, Phys. Rev. Lett. 92, 245002 (2004)ADSGoogle Scholar
  51. 51.
    A. Kirk, Plasma Phys. Control. Fusion 47, 315 (2005)ADSGoogle Scholar
  52. 52.
    A. Schmid, Plasma Phys. Control. Fusion 50, 045007 (2008)ADSGoogle Scholar
  53. 53.
    C.C. Hegna, Phys. Plasmas 3, 584 (1996)ADSGoogle Scholar
  54. 54.
    S. Saarelma, Plasma Phys. Control. Fusion 48, 31 (2007)ADSGoogle Scholar
  55. 55.
    J.W. Connor, R.J. Hastie, J.B. Taylor, Proc. Roy. Soc. London Ser. A Math. Phys. Sci. 365, 1720 (1979)Google Scholar
  56. 56.
    R.L. Miller, R.W. Moore, Phys. Rev. Lett. 43, 11 (1979)Google Scholar
  57. 57.
    R.L. Miller, Phys. Plasmas 5, 973 (1998)MathSciNetADSGoogle Scholar
  58. 58.
    J. Wesson, Tokamaks, 3rd edn. (Clarendon Press, Oxford, 2004)Google Scholar
  59. 59.
    C.E. Kessel, Nucl. Fusion 34, 1221 (1994)ADSGoogle Scholar
  60. 60.
    P.B. Snyder, Phys. Plasmas 9, 2037 (2002)ADSGoogle Scholar
  61. 61.
    H.R. Wilson, Phys. Plasmas 9, 1277 (2002)ADSGoogle Scholar
  62. 62.
    G.T.A. Huysmans, S.E. Sharapov, A.B. Mikhailovskii, W. Kerner, Phys. Plasmas 8, 4292 (2001)ADSGoogle Scholar
  63. 63.
    P.B. Snyder, Nucl. Fusion 44, 320 (2004)ADSGoogle Scholar
  64. 64.
    P.B. Snyder, H.R. Wilson, Plasma Phys. Controlled Fusion 45, 1671 (2003)ADSGoogle Scholar
  65. 65.
    A. Mossessian, Phys. Plasmas 10, 1720 (2003)ADSGoogle Scholar
  66. 66.
    S. Saarelma, Nucl. Fusion 43, 262 (2003)ADSGoogle Scholar
  67. 67.
    L.L. Lao, Nucl. Fusion 41, 295 (2001)ADSGoogle Scholar
  68. 68.
    T.W. Petrie, J. Nucl. Mater. 196–198, 848 (1992)Google Scholar
  69. 69.
    O. Gruber, Phys. Rev. Lett. 74, 4217 (1995)ADSGoogle Scholar
  70. 70.
    A.W. Leonard, J. Nucl. Mater. 290–293, 1097 (2001)Google Scholar
  71. 71.
    A.W. Degeling, Plasma Phys. Control. Fusion 45, 1637 (2003)ADSGoogle Scholar
  72. 72.
    P.T. Lang, Nucl. Fusion 44, 665 (2004)ADSGoogle Scholar
  73. 73.
    T.E. Evans, Nat. Phys. 2, 419 (2006)Google Scholar
  74. 74.
    Y. Liang, Phys. Rev. Lett. 98, 265004 (2007)ADSGoogle Scholar
  75. 75.
    M. Shimada, Progress in the ITER Physics Basis: Chap. 1. Overview Summary Nucl. Fusion 47, S1 (2007)Google Scholar
  76. 76.
    K. Tobita, Nucl. Fusion 49, 075029 (2009)ADSGoogle Scholar
  77. 77.
    P. Monier-Garbet, Nucl. Fusion 45, 1404 (2005)ADSGoogle Scholar
  78. 78.
    R. Sartori, Plasma Phys. Control. Fusion 46, 723 (2004)ADSGoogle Scholar
  79. 79.
    J. Rapp, Nucl. Fusion 44, 312 (2004)ADSGoogle Scholar
  80. 80.
    J. Rapp, J. Nucl. Mater. 337–339, 826 (2005)Google Scholar
  81. 81.
    K. Itami, J. Nucl. Mater. 266–269, 1097 (1999)Google Scholar
  82. 82.
    S. Sakurai et al., J. Nucl. Mater. 290–293, 1102 (2001)Google Scholar
  83. 83.
    H. Kubo, Nucl. Fusion 41, 227 (2001)ADSGoogle Scholar
  84. 84.
    H. Kubo, JT-60 team. Phys. Plasmas 9, 2127 (2002)Google Scholar
  85. 85.
    S. Higashijima, J. Nucl. Mater. 313–316, 1123 (2003)Google Scholar
  86. 86.
    J. Rapp, Plasma Phys. Control. Fusion 44, 639 (2002)ADSGoogle Scholar
  87. 87.
    G.J. Radford, Contrib. Plasma Phys. 36, 187 (1996)ADSGoogle Scholar
  88. 88.
    D. Reiter, H. Kever, G.H. Wolf, Plasma Phys. and Contr. Fus. 33, 1579 (1991)ADSGoogle Scholar
  89. 89.
    A. Loarte et al., Fusion energy 2000. in Proceedings of 18th International Conference on Sorrentto (Vienna, IAEA, 2000). CD-ROM file ITERP/11RGoogle Scholar
  90. 90.
    P.T. Lang, Plasma Phys. Control. Fusion 46, L31–L39 (2004)ADSGoogle Scholar
  91. 91.
    F. Sartori, in Proceedings of 35th EPS Conference on Plasma Physics, vol 32D (ECA) (Hersonissos, Greece, 2008), P5.045Google Scholar
  92. 92.
    S.P. Gerhardt, Nucl. Fusion 50, 064015 (2010)ADSGoogle Scholar
  93. 93.
    E. de la Luna et al., in Proceedings of 36th EPS Conference on Plasma Physics (Sofia) (ECA), vol. 33E (2009), P5.174Google Scholar
  94. 94.
    E. de la Luna et al., 23rd IAEA, EXC/8-4 (2010)Google Scholar
  95. 95.
    P.T. Lang, Nucl. Fusion 43, 1110 (2003)ADSGoogle Scholar
  96. 96.
    P.T. Lang, Nucl. Fusion 47, 754 (2007)ADSGoogle Scholar
  97. 97.
    L.R. Baylor et al., in Proceedings of 35th EPS Conference on Plasma Physics (Hersonissos, Greece) (ECA), vol. 32D (2008), P4-098Google Scholar
  98. 98.
    A.R. Polevoi, Nucl. Fusion 43, 1072 (2003)ADSGoogle Scholar
  99. 99.
    D.K. Mansfield, Nucl. Fusion 53, 113023 (2013)ADSGoogle Scholar
  100. 100.
    L.R. Baylor, in Proceedings 37th EPS Conference on Plasma Physics and Controlled Fusion (Dublin, Ireland, 2010), P2.117 http://ocs.ciemat.es/EPS2010PAP/pdf/P2.117.pdf
  101. 101.
    G.T.A. Huysmans, Plasma Phys. Control. Fusion 51, 124012 (2009)ADSGoogle Scholar
  102. 102.
    F.M. Poli, Nucl. Fusion 50, 025004 (2010)ADSGoogle Scholar
  103. 103.
    G. Kocsis, Nucl. Fusion 47, 1166 (2007)ADSGoogle Scholar
  104. 104.
    S.K. Combs, J. Vac. Sci. Tech. A 6, 1901 (1988)ADSGoogle Scholar
  105. 105.
    L.R. Baylor, Nucl. Fusion 49, 085013 (2009)ADSGoogle Scholar
  106. 106.
    A. Kirk, Nucl. Fusion 50, 034008 (2010)ADSGoogle Scholar
  107. 107.
    J.M. Canik, Nucl. Fusion 50, 034012 (2010)ADSGoogle Scholar
  108. 108.
    T.E. Evans, Phys. Rev. Lett. 92, 235003 (2004)ADSGoogle Scholar
  109. 109.
    T.E. Evans, Nucl. Fusion 48, 024002 (2008)ADSGoogle Scholar
  110. 110.
    W. Suttrop, Phys. Rev. Lett. 106, 225004 (2011)ADSGoogle Scholar
  111. 111.
    Y.M. Jeon, Phys. Rev. Lett. 109, 035004 (2012)ADSGoogle Scholar
  112. 112.
    Y. Liang, Nucl. Fusion 53, 073036 (2013)ADSGoogle Scholar
  113. 113.
    W. Suttrop et al., in Proceedings of 39th EPS Conference & 16th International Congress on Plasma Physics (2012), P2.092Google Scholar
  114. 114.
    Y. Liang, Nucl. Fusion 50, 025013 (2010)ADSGoogle Scholar
  115. 115.
    I. Barlow, Fusion Eng. Des. 58–59, 189 (2001)Google Scholar
  116. 116.
    Y. Liang, Plasma Phys. Control. Fusion 49, B581 (2007)ADSGoogle Scholar
  117. 117.
    Y. Liang, J. Nucl. Mater. 390–91, 733–739 (2009)Google Scholar
  118. 118.
    S. Jachmich, J. Nucl. Mater. 390–391, 768–772 (2009)Google Scholar
  119. 119.
    H.R. Koslowski et al., in 34th EPS Conference on Plasma Physics Warsaw 2-6 July 2007, ECA, vol. 31F (2007), P-5.135Google Scholar
  120. 120.
    M.E. Fenstermacher et al., 23rd IAEA, ITR/P1-30 (2010)Google Scholar
  121. 121.
    J.M. Canik, Nucl. Fusion 50, 064016 (2010)ADSGoogle Scholar
  122. 122.
    J.C. Vallet, Phys. Rev. Lett. 67, 2662 (1991)ADSGoogle Scholar
  123. 123.
    A. Alfier, Nucl. Fusion 48, 115006 (2008)ADSGoogle Scholar
  124. 124.
    S. Saarelma, Plasma Phys. Control. Fusion 51, 035001 (2009)ADSGoogle Scholar
  125. 125.
    Y. Liang, Plasma Fusion Res. 5, S2018 (2010)ADSGoogle Scholar
  126. 126.
    E.J. Strait, Phys. Rev. Lett. 74, 2483 (1995)ADSGoogle Scholar
  127. 127.
    R. Buttery, Phys. Plasmas 15, 056115 (2008)ADSGoogle Scholar
  128. 128.
    R. Fitzpatrick, Phys. Plasmas 5, 3325 (1998)ADSGoogle Scholar
  129. 129.
    K.C. Shaing, Phys. Plasmas 10, 1443 (2003)ADSGoogle Scholar
  130. 130.
    K.C. Shaing, Phys. Fluids 29, 521 (1986)ADSGoogle Scholar
  131. 131.
    J.-K. Park, Phys. Rev. Lett. 102, 065002 (2009)ADSGoogle Scholar
  132. 132.
    A.J. Cole, Phys. Plasmas 15, 056102 (2008)ADSGoogle Scholar
  133. 133.
    W. Zhu, Phys. Rev. Lett. 96, 225002 (2006)ADSGoogle Scholar
  134. 134.
    M. Bècoulet, Nucl. Fusion 49, 085011 (2009)ADSGoogle Scholar
  135. 135.
    K.C. Shaing, Phys. Plasmas 15, 082506 (2008)ADSGoogle Scholar
  136. 136.
    J.-K. Park, Phys. Plasmas 16, 056115 (2009)ADSGoogle Scholar
  137. 137.
    A.M. Garofalo, Phys. Rev. Lett. 101, 195005 (2008)ADSGoogle Scholar
  138. 138.
    Y. Sun, Plasma Phys. Control. Fusion 52, 105007 (2010)ADSGoogle Scholar
  139. 139.
    A. Kirk, Phys. Rev. Lett. 108, 255003 (2012)ADSGoogle Scholar
  140. 140.
    A. Kirk, Nucl. Fusion 53, 043007 (2013)ADSGoogle Scholar
  141. 141.
    I.T. Chapman, Nucl. Fusion 52, 123006 (2012)ADSGoogle Scholar
  142. 142.
    M. Jakubowski, Nucl. Fusion 49, 095013 (2009)ADSGoogle Scholar
  143. 143.
    Y. Liang, Phys. Rev. Lett. 105, 065001 (2010)ADSGoogle Scholar
  144. 144.
    Y. Liang, Nucl. Fusion 51, 073001 (2011)ADSGoogle Scholar
  145. 145.
    C.G. Gimblett, R. J. Hastie, P. Helander, Phys. Rev. Lett. 96, 035006-1-4 (2006)Google Scholar
  146. 146.
    I.T. Chapman, Nucl. Fusion 47, L36 (2007)ADSGoogle Scholar
  147. 147.
    R. Moyer, Nucl. Fusion 52, 123019 (2012)ADSGoogle Scholar
  148. 148.
    R. Fischer, Plasma Phys. Control. Fusion 54, 115008 (2012)ADSGoogle Scholar
  149. 149.
    I.T. Chapman, Plasma Phys. Control. Fusion 54, 105013 (2012)ADSGoogle Scholar
  150. 150.
    S.P. Hirshman, D.K. Lee, Comput. Phys. Commun. 43, 143 (1986)MathSciNetADSGoogle Scholar
  151. 151.
    W.A. Cooper, Comput. Phys. Commun. 180, 1524 (2009)ADSGoogle Scholar
  152. 152.
    R.J. Sanchez, Comp. Physics 161, 576 (2000)ADSzbMATHGoogle Scholar
  153. 153.
    M.J. Schaffer, Nucl. Fusion 48, 024004 (2008)ADSGoogle Scholar
  154. 154.
    M. Bècoulet, Nucl. Fusion 48, 024003 (2008)ADSGoogle Scholar
  155. 155.
    M. Jakubowski, PRL 96, 035004 (2006)ADSGoogle Scholar
  156. 156.
    O. Schmitz, Plasma Phys. Control. Fusion 50, 124029 (2008)ADSGoogle Scholar
  157. 157.
    K. Burrell, Plasma Phys. Control. Fusion 47, B37 (2005)Google Scholar
  158. 158.
    M. Heyn, Nucl. Fusion 48, 024005 (2008)ADSGoogle Scholar
  159. 159.
    R. Fitzpatrick, Nucl. Fusion 33, 1049 (1993)ADSGoogle Scholar
  160. 160.
    B.V. Chirikov, Phys. Rep. 52, 263 (1979)MathSciNetADSGoogle Scholar
  161. 161.
    B. Hudson, Nucl. Fusion 50, 045006 (2010)ADSGoogle Scholar
  162. 162.
    Park Jong-kyu, Phys. Rev. Lett. 99, 195003 (2007)ADSGoogle Scholar
  163. 163.
    M.E. Fenstermacher, Nucl. Fusion 48, 122001 (2008)ADSGoogle Scholar
  164. 164.
    M.E. Fenstermacher, J. Nucl. Mater. 390–391, 793–796 (2009)Google Scholar
  165. 165.
    T.E. Evans, Phys. Plasmas 13, 056121 (2006)ADSGoogle Scholar
  166. 166.
    M.E. Fenstermacher, Phys. Plasmas 15, 056122 (2008)ADSGoogle Scholar
  167. 167.
    R.A. Moyer, Phys. Plasmas 12, 056119 (2005)ADSGoogle Scholar
  168. 168.
    R.A. Moyer, Nucl. Fus. 45, 595 (2005)ADSGoogle Scholar
  169. 169.
    C.G. Lowry, Bull. Am. Phys. Soc. 54, 329 (2009)Google Scholar
  170. 170.
    NSTX Research 5-Year Plan for 2009-13, http://nstx.pppl.gov/fiveyearplan.html
  171. 171.
    W.W. Xiao, Nucl. Fusion 52, 114027 (2012)ADSGoogle Scholar
  172. 172.
    Kim Jayhyun, Nucl. Fusion 52, 114011 (2012)Google Scholar
  173. 173.
    X.L. Zou et al. in Proceedings of 24th IAEA Fusion Energy Conference October 8–13, PD/P8-08 (IAEA, San Diego, 2012)Google Scholar
  174. 174.
    Y. Liang, Phys. Rev. Lett. 110, 235002 (2013)ADSGoogle Scholar
  175. 175.
    J.G. Li et al., 17 NOVEMBER 2013. Nat. Phys. DOI: 10.1038/NPHYS2795

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Forschungszentrum Jülich GmbH, Association EURATOM-FZ JülichInstitut Für Energieforschung—Plasmaphysik, Trilateral Euregio ClusterJülichGermany

Personalised recommendations