Identification of MHD Instabilities in Experiments

  • Anja GudeEmail author
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 83)


There is a wide range of MHD instabilities which can develop in tokamak plasmas. These instabilities can have ideal or resistive (tearing) character, can be driven by gradients of pressure, current or energetic particles distributions (in position and momentum space), and can reside inside the plasma or affect the plasma boundary significantly. Investigation of their characteristics is the first step towards their identification. The poloidal and toroidal mode number, the mode frequency, the mode amplitude and spatial structure are important features to describe an instability. Although such a plain description does not directly make any statement on stability, driving forces and growth rate or saturation of modes, it is basic information for such analysis and for validation of stability codes. In the following we describe experimental possibilities to determine the above mentioned mode characteristics, mode coupling and how to distinguish between ideal and tearing modes.


Singular Value Decomposition Mode Number Flux Surface Magnetic Island Phase Jump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W.W. Heidbrink, Phys. Plasmas 15, 055501 (2008)CrossRefADSGoogle Scholar
  2. 2.
    F. Waelbroeck, Nucl. Fusion 49, 104025 (2009)CrossRefADSGoogle Scholar
  3. 3.
    J. Callen, Nucl. Fusion 51, 094026 (2011)CrossRefADSGoogle Scholar
  4. 4.
    D. Naujoks et al., Nucl. Fusion 36, 671 (1996)CrossRefADSGoogle Scholar
  5. 5.
    K.V. Mardia, J.T. Kent, J.M. Bibby, Multivariate Analysis, Probability and Mathematical Statistics (Academic Press, Boston, 1979)Google Scholar
  6. 6.
    F. Murtagh, A. Heck, Multivariate Data Analysis (Astrophysics and Space Science Library, New York, 1987)CrossRefzbMATHGoogle Scholar
  7. 7.
    H. Akaike, IEEE Trans. Autom. Control 19, 716 (1974)MathSciNetCrossRefADSzbMATHGoogle Scholar
  8. 8.
    M. Wax, T. Kailath, IEEE Trans. Acoust. Speech Signal Process. ASSP-33, 387 (1985)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    I.G.J. Classen et al., Rev. Sci. Instrum. 81, 10D929 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Kim, D. Edgell, J. Greene, E. Strait, M. Chance, Plasma Phys. Control. Fusion 41, 1399 (1999)CrossRefADSGoogle Scholar
  11. 11.
    C. Nardone, Plasma Phys. Controlled Fusion 34, 1447 (1992)CrossRefADSGoogle Scholar
  12. 12.
    T. Dudok de Wit, Plasma Phys. Controlled Fusion 37, 117 (1995)CrossRefADSGoogle Scholar
  13. 13.
    M.J. Hole, L.C. Appel, PPCF 49, 1971 (2007)ADSGoogle Scholar
  14. 14.
    I.H. Hutchinson, Principles of Plasma Diagnostics (University Press, Cambridge, 2002)CrossRefGoogle Scholar
  15. 15.
    J. Wesson, Tokamaks (Clarendon Press, Oxford, 2004)zbMATHGoogle Scholar
  16. 16.
    D. Pacella, R. Bellazzini, A. Brez, M. Finkenthal, RSI 75, 3926 (2004)Google Scholar
  17. 17.
    D. Pacella et al., RSI 72, 1372 (2001)Google Scholar
  18. 18.
    B.C. Stratton, M. Bitter, K.W. Hill, D.L. Hillis, J.T. Hogan, Fusion Sci. Technol. 53, 431 (2008)Google Scholar
  19. 19.
    M.J. Hole, L.C. Appel, R. Martin, Rev. Sci. Instrum. 80, 123507 (2009)CrossRefADSGoogle Scholar
  20. 20.
    M. Schittenhelm, H. Zohm, ASDEX upgrade team. Nucl. Fusion 37, 1255 (1997)Google Scholar
  21. 21.
    W.D. D’haeseleer, W.N.G. Hitchon, J.D. Callen, J.L. Shohet, Flux Coordinates and Magnetic Field Structure (Springer Series in Computational Physics, Berlin, 1990)Google Scholar
  22. 22.
    V.G. Merezhkin, Sov. J. Plasma Phys. 4, 152 (1978)ADSGoogle Scholar
  23. 23.
    D. Testa, A. Fasoli, E. Solano, Rev. Sci. Instrum. 74, 1694 (2003)CrossRefADSGoogle Scholar
  24. 24.
    V. Igochine, S. Günter, M. Maraschek, ASDEX Upgrade team. Nucl. Fusion 43, 1801 (2003)Google Scholar
  25. 25.
    J. Kim et al., Plasma Phys. Control. Fusion 43, 1593 (2001)CrossRefADSGoogle Scholar
  26. 26.
    G. Papp et al., Plasma Phys. Controlled Fusion 53, 065007 (2011)CrossRefADSGoogle Scholar
  27. 27.
    R. Kaita, S. Sesnic, Rev. Sci. Instrum. 68, 750 (1997)CrossRefADSGoogle Scholar
  28. 28.
    E. Rebhan, A. Salat, NF 16, 805 (1976)CrossRefGoogle Scholar
  29. 29.
    S. da Graca et al., Plasma Phys. Controlled Fusion 49, 1849 (2007)CrossRefADSGoogle Scholar
  30. 30.
    P. Piovesan et al., Nucl. Fusion 48, 065001 (2008)CrossRefADSGoogle Scholar
  31. 31.
    R. Fitzpatrick, Phys. Plasmas 2, 825 (1995)MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    J.P. Meskat et al., Plasma Phys. Controlled Fusion 43, 1325 (2001)CrossRefADSGoogle Scholar
  33. 33.
    M. Reich, A. Bock, M. Maraschek, ASDEX Upgrade team. Fusion Sci. Technol. 61, 309 (2012)Google Scholar
  34. 34.
    J.A. Wesson, NF 37, 577 (1997)CrossRefGoogle Scholar
  35. 35.
    T. Pütterich et al., Plasma Phys. Controlled Fusion 50, 085016 (2008)CrossRefADSGoogle Scholar
  36. 36.
    M. Anton et al., PPCF 38, 1849 (1996)ADSGoogle Scholar
  37. 37.
    A. Zohm, H. Kallenbach, H. Bruhns, G. Fussmann, O. Klüber, Europhys. Lett. 11, 745 (1990)CrossRefADSGoogle Scholar
  38. 38.
    M. Maraschek et al., Measurement and impact of the n = 1 intrinsic error field at asdex upgrade, in Europhysics Conference Abstracts (CD-ROM, Proceedings of the 40th EPS Conference on Plasma Physics, Espoo, Finland, 2013), ed by V. Naulin et al., volume 37D of ECA, pp. P4. 127, (Geneva, 2013) European Physical SocietyGoogle Scholar
  39. 39.
    J.T. Scoville, R.J. La Haye, Nucl. Fusion 43, 250 (2003)CrossRefADSGoogle Scholar
  40. 40.
    F. Karger, K. Lackner, G. Fussmann, PPCF 1, 267 (1977)ADSGoogle Scholar
  41. 41.
    O. Klüber et al., Nucl. Fusion 31, 907 (1991)CrossRefGoogle Scholar
  42. 42.
    S. Yoshimura, M. Takashi, T. Yasushi, Phys. Plasmas 9, 3378 (2002)CrossRefADSGoogle Scholar
  43. 43.
    F. Porcelli, E. Rossi, G. Cima, A. Wootton, PRL 82, 1458 (1999)CrossRefADSGoogle Scholar
  44. 44.
    Z. Pietrzyk et al., Nucl. Fusion 39, 587 (1999)Google Scholar
  45. 45.
    B. Kadomtsev, Sov. J. Plasma Phys. 1, 710 (1975)Google Scholar
  46. 46.
    T. Nicolas et al., POP 19, 112305 (2012)Google Scholar
  47. 47.
    I.T. Chapman et al., PRL 105, 255002 (2010)CrossRefADSGoogle Scholar
  48. 48.
    M. Manso et al., Local measurement with microwave reflectometry of density profile perturbations due to MHD activity on ASDEX Upgrade, in Europhysics Conference Abstracts (CD-ROM), Proceedings of the 1998 ICPP & 25th EPS Conference on Controlled Fusion and Plasma Physics, Praha, 1998, ed by P. Pavlo, vol. 22C (EPS, Petit-Lancy, 1998), pp. 544–547Google Scholar
  49. 49.
    G.D. Conway et al., Locating rational surfaces from reflectometer fluctuations, in Europhysics Conference Abstracts (CD-ROM, Proceedings of the 29th EPS Conference on Plasma Physics and Controlled Fusion, Montreux, 2002), ed by R. Behn, C. Varandas, vol. 26B (EPS,Geneva, 2002), pp. P–4.075Google Scholar
  50. 50.
    K.J. Gibson et al., PPCF 52, 124041 (2010)Google Scholar
  51. 51.
    M. Yu Kantor, A.J.H. Donné, R. Jaspers, H.J. van der Meiden, T. Team, PPCF 51, 055002 (2009)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Max Planck Institute for Plasma PhysicsGarchingGermany

Personalised recommendations