Skip to main content

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 83))

  • 1471 Accesses

Abstract

A credible roadmap to fusion maximizes performance while still allowing for a safe, efficient and reliable operation of the plant. In this effort control of plasma quantities and off-normal events plays a very important role: the challenge will be not only that of controlling individual quantities, but also that of integration in a harsh nuclear environment. Operation of a fusion reactor will need complete mastering of the plasma. Real time control of MHD stability is a paradigmatic example. Successful control of MHD stability is based in fact on integrated control of both magnetic and kinetic quantities, influences component integrity, plasma-wall interaction and D-T burn and is a requisite for handling off-normal events like disruptions. This final chapter aims at presenting a global view of the open issues and of the potential solutions that characterize the challenge of integrating stability control in an effective fusion scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Besides of course the stellarator configuration, which is outside the scope of this book.

  2. 2.

    A comparison that was suggested to me by Tim Hender: the weight force of an Airbus 380 airplane is about 5.5 MN, while the displacement (weight) of a medium size ship is about 50 MN.

References

  1. http://bicycle.tudelft.nl

  2. T.C. Hender et al., IAEA Fusion Energy Conference 2002—Paper EX/P2-22, http://www-pub.iaea.org/mtcd/meetings/pdfplus/fusion-20-preprints/EX_P2-22.pdf

  3. P. Martin et al., Nucl. Fusion 51, 094023 (2011)

    Article  ADS  Google Scholar 

  4. J. Hanson et al., Accepted for publication in Physics of Plasmas (2014)

    Google Scholar 

  5. P. Piovesan et al., Phys. Rev. Lett. 113, 045003 (2014)

    Article  ADS  Google Scholar 

  6. C. Gormezano et al., Nucl. Fusion 47, S285 (2007)

    Article  ADS  Google Scholar 

  7. A. Loarte et al., J. Nucl. Mater. 313–316, 962 (2003)

    Article  Google Scholar 

  8. Hender T.C. et al., Nucl Fusion 47 S128

    Google Scholar 

  9. S. Von Goeler, W. Stodiek, N. Sauthoff, Phys. Rev. Letters 33, 1201 (1974)

    Article  ADS  Google Scholar 

  10. F. Porcelli, D. Boucher, M. Rosenbluth, Plasma Phys. Control. Fusion 38, 2163 (1996)

    Article  ADS  Google Scholar 

  11. I.T. Chapman, Plasma Phys. Control. Fusion 53, 013001 (2011)

    Article  ADS  Google Scholar 

  12. Z. Chang, J.D. Callen, E.D. Frederickson, R.V. Bud-ny, C.C. Hegna, K.M. McGuire, M.C. Zarnstorff, TFTR Group, Phys. Rev. Lett. 74, 4663 (1995)

    Google Scholar 

  13. O. Sauter et al., Phys. Plasmas 4, 1654 (1997)

    Article  ADS  Google Scholar 

  14. H. Zohm et al., Plasma Phys. Control. Fusion 45, A163 (2003)

    Article  ADS  Google Scholar 

  15. F. Wagner et al., Phys. Rev. Lett. 49, 1408 (1982)

    Article  ADS  Google Scholar 

  16. J.W. Connor, Plasma Phys. Control. Fusion 40, 531 (1998)

    Article  ADS  Google Scholar 

  17. E. la Luna de et al.,in 23th IAEA Fusion Energy Conference, Paper EXC/8-4 (2010)

    Google Scholar 

  18. T.E. Evans et al., Nature Phys. 2, 419 (2006)

    Article  ADS  Google Scholar 

  19. Y. Liang et al., Phys. Rev. Lett. 98, 265004 (2007)

    Article  ADS  Google Scholar 

  20. A. Kirk et al., Nucl. Fusion 50, 034008 (2010)

    Article  ADS  Google Scholar 

  21. J.M. Canik et al., Nucl. Fusion 50, 034012 (2010)

    Article  ADS  Google Scholar 

  22. M. García-Muñoz et al., in IAEA FEC 2012, Paper EX/P6-03 (2012)

    Google Scholar 

  23. A. Bondeson, D.J. Ward, Phys. Rev. Let. 72, 2709 (1994)

    Article  ADS  Google Scholar 

  24. M.S. Chu, M. Okabayashi, Plasma Phys. Control. Fusion 52, 123001 (2010)

    Article  ADS  Google Scholar 

  25. P. Brunsell et al., Phys. Rev. Lett. 93, 225001

    Google Scholar 

  26. M. Baruzzo et al., Nucl. Fusion 52, 103001 (2012)

    Article  ADS  Google Scholar 

  27. Y. In et al., Plasma Phys. Control. Fusion 52, 104004 (2010)

    Article  ADS  Google Scholar 

  28. Zanca et al., PPCF 54, 094004 (2012)

    ADS  Google Scholar 

  29. G. F. Matthews et al. in Fusion Energy 2002 (Proc. 19th Int. Conf. Lyon, 2002) (Vienna: IAEA) Paper EX/D1-1, http://www-pub.iaea.org/mtcd/publications/pdf/csp_019c/pdf/exd1_1.pdf

  30. M. Sugihara et al., Disruption scenarios, their mitigation and operation window in ITER Nucl. Fusion 47, 337 (2007)

    Article  Google Scholar 

  31. S. Putvinski et al., in 2010 IAEA FEC, Paper ITR/1-6

    Google Scholar 

  32. W.W. Heidbrink, G.J. Sadler, Nucl. Fusion 34, 535 (1994)

    Article  ADS  Google Scholar 

  33. H.H. Duong et al., Nucl. Fusion 33, 749 (1993)

    Article  ADS  Google Scholar 

  34. R.B. White et al., Phys. Plasmas 2, 2871 (1995)

    Article  ADS  Google Scholar 

  35. S.K. Nielsen et al., Plasma Phys. Control. Fusion 52, 092001 (2010)

    Article  ADS  Google Scholar 

  36. R.J. Goldston, R.B. White, A.H. Boozer, Phys. Rev. Lett. 47, 647 (1981)

    Article  ADS  Google Scholar 

  37. A. Fasoli et al., Plasma Phys. Control. Fusion 52, 075015 (2010)

    Article  ADS  Google Scholar 

  38. B.N. Breizman et al., Phys. Plasmas 10, 3649 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  39. C.C. Petty et al., in Proceedings of 23rd International Conference on Fusion Energy 2010 (Daejon, Korea Rep., 2010)

    Google Scholar 

  40. R. Lorenzini et al., Nature Phys. 5, 570 (2009)

    Google Scholar 

  41. S. Guenter et al., Phys. Rev. Lett. 87, 275001 (2001)

    Article  Google Scholar 

  42. G. Matsunaga et al., Phys. Rev. Lett. 103, 045001 (2009)

    Article  ADS  Google Scholar 

  43. O. Sauter, M. Henderson, G. Ramponi, H. Zohm, and C. Zucca, Plasma Phys. Controlled Fusion 52, 025002 (17 pp) (2010)

    Google Scholar 

  44. J. Snipes, in MHD and Plasma Control in ITER, Talk Given at the 4th ITER International Summer Schhol on MHD and Plasma Control, Austin 2010, http://w3fusion.ph.utexas.edu/ifs/iiss2010/iisstalks/Snipes_Joseph_talk.pdf

  45. F. Volpe et al., Phys. Plasmas 16, 102502 (2009)

    Article  ADS  Google Scholar 

  46. R. Bartiromo et al., Phys. Rev. Lett. 83, 1779

    Google Scholar 

  47. Goodman et al., PRL 106 (2011)

    Google Scholar 

  48. T.P. Goodman et al., Phys. Rev. Lett. 106, 245002 (2011)

    Article  ADS  Google Scholar 

  49. D.A. Humphreys, in High Reliability Operation and Disruption Control in Tokamaks, Talk Given at the 4th ITER International Summer Schhol on MHD and Plasma Control, Austin 2010, http://w3fusion.ph.utexas.edu/ifs/iiss2010/iisstalks/Humphreys_David_talk.pdf

  50. G. Marchiori et al., Nucl. Fusion 52, 023020 (2012)

    Article  ADS  Google Scholar 

  51. Y. Liu et al., Plasma Phys. Control. Fusion 52, 104002 (2010)

    Article  ADS  Google Scholar 

  52. JT-60SA, Research Plan version 3.1, (Dec 2013). http://www.jt60a.org/b/index_nav_3.htm?n3/operation.htm

  53. P. Martin, Fusion Sci.Technol. 59, 602–616 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martin, P. (2015). Perspectives for Integrated Control. In: Igochine, V. (eds) Active Control of Magneto-hydrodynamic Instabilities in Hot Plasmas. Springer Series on Atomic, Optical, and Plasma Physics, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44222-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44222-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44221-0

  • Online ISBN: 978-3-662-44222-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics