SPH Modeling for Flow Slides in Landfills

Chapter
Part of the Springer Natural Hazards book series (SPRINGERNAT)

Abstract

Flow slides at municipal solid waste (MSW) landfills can lead to a leak of toxic MSW and leachate over a large area, and thus serious pollution of the environment in the surrounding region. SPH method is introduced in this chapter to predict the propagation of failed MSW in the environment. The flow slides that occurred in landfills located in Sarajevo, Bandung and Payatas were simulated. The results match the field data well and highlight the capability of the proposed SPH modeling method to simulate such complex phenomena as flow slides in MSW landfills.

Keywords

Geophysics Liquefaction Indonesia Incineration Bacas 

References

  1. Bacas, B. M., Konietzky, H., Berini, J. C., & Sagaseta, C. (2011). A new constitutive model for textured geomembrane/geotextile interfaces. Geotextiles and Geomembranes, 29, 137–148.CrossRefGoogle Scholar
  2. Bergadoa, D. T., Ramanab, G. V., & Varun, H. I. S. (2006). Evaluation of interface shear strength of composite liner system and stability analysis for a landfill lining system in Thailand. Geotextiles and Geomembranes, 24, 371–393.CrossRefGoogle Scholar
  3. Blight, G. E. (2008). Slope failures in municipal solid waste dumps and landfills: A review. Waste Management and Research, 26(5), 448–463.CrossRefGoogle Scholar
  4. Blight, G. E., & Fourie, A. B. (2005). Catastrophe revisited—disastrous flow failures of mine and municipal solid waste. Geotechnical and Geological Engineering, 23, 219–248.Google Scholar
  5. Chang, M. (2002). A 3D slope stability analysis method assuming parallel lines of intersection and differential straining of block contacts. Canadian Geotechical Journal, 39(4), 799–811.CrossRefGoogle Scholar
  6. Chang, M. (2005). Three-dimensional stability analysis of the Kettleman Hills landfill slope failure based on observed sliding-block mechanism. Computers and Geotechnics, 32, 587–599.CrossRefGoogle Scholar
  7. Chen, J. K., & Beraun, J. E. (2000). A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Computer Method in Applied Mechanics and Engineering, 190(1–2), 225–239.CrossRefGoogle Scholar
  8. Chen, Y. M., Luo, C. Y., & Ke, H. (2003). Geotechnical properties of municipal solid waste in China. In Proceedings of the 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering (Vol. 1–2, pp. 365–368).Google Scholar
  9. Chen, Z., & Yuan, J. (2009). An extended environmental multimedia modeling system (EEMMS) for landfill case studies. Environmental Forensics, 10, 336–346.CrossRefGoogle Scholar
  10. Cho, Y. M., Koa, J. H., Chi, L. Q., & Townsend, T. G. (2011). Food waste impact on municipal solid waste angle of internal friction. Waste Management, 31(1), 26–32.CrossRefGoogle Scholar
  11. Chugh, A. K., Stark, T. D., & DeJong, K. A. (2007). Reanalysis of a municipal landfill slope failure near Cincinnati, Ohio, USA. Canadian Geotechnical Journal, 44(1), 33–53.CrossRefGoogle Scholar
  12. Cleary, P. W., Prakash, M., & Ha, J. (2006). Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. Journal of Materials Processing Technology, 177(1–3), 41–48.CrossRefGoogle Scholar
  13. Coumoulos, D. G., Koryalos, T. P., Metaxas, J. L., & Gioka, D. A. (1995). Geotechnical investigation at the main landfill of Athens. In: Proceedings Sardinia 95, 5th International Landfill Symposium, (pp. 885–895). Cagliari, Italy.Google Scholar
  14. Eid, H. T. (2011). Shear strength of geosynthetic composite systems for design of landfill liner and cover slopes. Geotextiles and Geomembranes, 29(3), 335–344.CrossRefGoogle Scholar
  15. Fang, J. N., Owens, R. G., Tacher, L., & Parriaux, A. (2006). A numerical study of the SPH method for simulating transient viscoelastic free surface flows. Journal of Non-Newtonian Fluid Mechanics, 139(1–2), 68–84.CrossRefGoogle Scholar
  16. Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: Theory and application to non-spherial stars. Monthly Notices of the Royal Astronomical, 181, 375–389.CrossRefGoogle Scholar
  17. Huang, Y., Dai, Z. L., Zhang, W. J., & Chen, Z. Y. (2011a). Visual simulation of landslide fluidized movement based on smoothed particle hydrodynamics. Natural Hazards, 59(3), 1225–1238.CrossRefGoogle Scholar
  18. Huang, Y., Zhang, W. J., Mao, W. W., & Jin, C. (2011b). Flow analysis of liquefied soils based on smoothed particle hydrodynamics. Natural Hazards, 59(3), 1547–1560.CrossRefGoogle Scholar
  19. Huang, Y., Dai, Z. L., Zhang, W. J., & Huang, M. S. (2013). SPH-based numerical simulations of flow slides in municipal solid waste landfills. Waste Management and Research, 31(3), 256–264.CrossRefGoogle Scholar
  20. Huang, Y., Zhang, W. J., Xu, Q., & Xie, P. (2012). Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides 9(2), 275–283.Google Scholar
  21. Hadush, S., Yashima, A., & Uzuoka, R. (2000). Importance of viscous fluid characteristics in liquefaction induced lateral spreading analysis. Computers and Geotechnics, 27(3), 199–224.CrossRefGoogle Scholar
  22. Johnson, G. R., Petersen, E. H., & Stryk, R. A. (1993). Incorporation of an SPH option into the EPIC code for a wide range of high velocity impact computations. International Journal of Impact Engineering, 14(1–4), 385–394.Google Scholar
  23. Karekal, S., Das, R., Mosse, L., & Cleary, P. W. (2011). Application of a mesh-free continuum method for simulation of rock caving processes. International Journal of Rock Mechanics and Mining Sciences, 48(5), 703–711.CrossRefGoogle Scholar
  24. Koelsch, F., Fricke, K., Mahler, C., & Damanhuri, E. (2005). Stability of landfills-the Bandung dumpsite disaster. In Proceedings of the 10th International Waste Management and Landfill Symposium. Sardinia, Cagliari, Italy.Google Scholar
  25. Liu, C. L., Zhang, Y., Zhang, F., et al. (2007). Assessing pollutions of soil and plant by municipal waste dump. Environmental Geology, 52(4), 641–651.CrossRefGoogle Scholar
  26. Liu, M. B., & Liu, G. R. (2010). Smoothed particle hydrodynamics (SPH): An overview and recent developments. Archives of Computational methods in Engineering, 17(1), 25–76.CrossRefGoogle Scholar
  27. Liu, X. L., Si, W. J., Zhu, C. Y., & et al. (2010). Analysis on stability of liner system located in slope of municipal solid waste landfill. In Proceeding of 7th International Symposium on Safety Science and Technology (ISSST). Hangzhou, China.Google Scholar
  28. Lu, Y., Wang, Z. Q., & Chong, K. R. (2005). A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations. Soil Dynamics and Earthquake Engineering, 25(4), 275–288.CrossRefGoogle Scholar
  29. Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 82(12), 1013–1024.CrossRefGoogle Scholar
  30. Machado, S. L., Karimpour-Fard, M., Shariatmadari, N., et al. (2010). Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Management, 30(12), 2579–2591.CrossRefGoogle Scholar
  31. Ministry of Environmental Pretection of the People’s Republic of China (2011). The communique on china’s environmental conditions. Retrieved March 6, 2011, from http://jcs.mep.gov.cn/hjzl/zkgb/2010zkgb/201106/t20110602_211569.htm (in Chinese).
  32. Mitchell, J. K., Seed, R. B., & Seed, H. B. (1990). Kettleman Hills waste landfill slope failure. I. liner-system properties. Journal of geotechnical engineering, 116(4), 647–668.CrossRefGoogle Scholar
  33. Nie, Y. F., Niu, D. J., & Bai, Q. Z. (2000). The management of municipal solid waste in China. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 35(10), 1973–1980.Google Scholar
  34. Reddy, K. R., Hettiarachchi, H., Parakalla, N. S., et al. (2009). Geotechnical properties of fresh municipal solid waste at Orchard Hills landfill USA. Waste Management, 29(2), 952–959.CrossRefGoogle Scholar
  35. Sanchez-Alciturri, J. M., Palma, J., Sagaseta. C., & et al. (1993). Mechanical properties of wastes in a sanitary landfill. In Proceedings of the Green ‘93, Waste Disposal by Landfill (pp. 357–363). Bolton, UK.Google Scholar
  36. Sigalotti, L. D., Lopez, H., & Trujillo, L. (2009). An adaptive SPH method for strong shocks. Journal of Computational Physics, 228(16), 5888–5907.CrossRefGoogle Scholar
  37. Stark, T. D., & Poepple, A. R. (1994). Landfill liner interface strengths from torsional-ring-shear tests. Journal of Geotechnical Engineering, ASCE, 120(3), 597–615.CrossRefGoogle Scholar
  38. Uzuoka, R., Yashima, A., Kawakami, T., et al. (1998). Fluid dynamics based prediction of liquefaction induced lateral spreading. Computers and Geotechnics, 22(3/4), 243–282.CrossRefGoogle Scholar
  39. Wang, H. T., & Nie, Y. F. (2001). Municipal solid waste characteristics and management in China. Journal of the Air and Waste Management Association, 51, 250–263.CrossRefGoogle Scholar
  40. Wang, Z. Q., Lu, Y., Hao, H., & Chong, K. (2005). A full coupled numerical analysis approach for buried structures subjected to subsurface blast. Computers and Structures, 83(4–5), 339–356.CrossRefGoogle Scholar
  41. Xiong, H. B., Chen, L. H., & Lin, J. Z. (2006). Smoothed particle hydrodynamics modeling of free surface flow. Journal of Hydrodynamics, 18(1), 443–445.CrossRefGoogle Scholar
  42. Yu, L., & Batlle, F. (2011). A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill. Waste Management, 31(12), 2484–2496.CrossRefGoogle Scholar
  43. Zekkos, D., Athanasopoulos, G. A., Bray, J. D., et al. (2010). Large-scale direct shear testing of municipal solid waste. Waste Management, 30(8–9), 1544–1555.CrossRefGoogle Scholar
  44. Zhan, L. T., Chen, Y. M., & Ling, W. A. (2008). Shear strength characterization of municipal solid waste at the Suzhou landfill, China. Engineering Geology, 97(3–4), 97–111.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Geotechnical EngineeringTongji UniversityShanghaiChina

Personalised recommendations