Centralizing Bias and the Vibrotactile Funneling Illusion on the Forehead

  • Hamideh KerdegariEmail author
  • Yeongmi Kim
  • Tom Stafford
  • Tony J. Prescott
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8619)


This paper provides a novel psychophysical investigation of head-mounted vibrotactile interfaces for sensory augmentation. A 1-by-7 headband vibrotactile display was used to provide stimuli on each participant’s forehead. Experiment I investigated the ability to identify the location of a vibrotactile stimulus presented to a single tactor in the display; results indicated that localization error is uniform but biased towards the forehead midline. In Experiment II, two tactors were activated simultaneously, and participants were asked to indicate whether they experienced one or two stimulus locations. Participants reported the funneling illusion—experiencing one stimulus when two tactors were activated—mainly for the shortest inter-tactor difference. We discuss the significance of these results for the design of head-mounted vibrotactile displays and in relation to research on localization and funneling on different body surfaces.


Head-mounted vibrotactile display Localization Funneling illusion 



This work was supported by the University of Sheffield Search and Rescue 2020 project and in parts by the EU project BEAMING 248620.


  1. 1.
    Geldard, F.A.: Some neglected possibilities of communication. Science 131(3413), 1583–1588 (1960)CrossRefGoogle Scholar
  2. 2.
    Kaczmarek, K.A., Bach-Y-Rita, P.: Tactile displays. In: Barfield, W., Furness, T. (eds.) Virtual environments and advanced interface design, pp. 349–414. Oxford University Press, New York (1995)Google Scholar
  3. 3.
    Cassinelli, A., Reynolds, C., Ishikawa, M.: Augmenting spatial awareness with haptic radar. In: 10th IEEE International Symposium on Wearable Computers (2006)Google Scholar
  4. 4.
    Bertram, C., Evans, M.H., Javaid, M., Stafford, T., Prescott, T.: Sensory augmentation with distal touch: the tactile helmet project. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 24–35. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Van Erp, J.B.: Presenting directions with a vibrotactile torso display. Ergonomics 48(3), 302–313 (2005)CrossRefGoogle Scholar
  6. 6.
    Jones, L.A., Lockyer, B., Piateski, E.: Tactile display and vibrotactile recognition on the torso. Adv. Robot. 20, 1359–1374 (2006)CrossRefGoogle Scholar
  7. 7.
    Lindeman, R.W., Yanagida, Y.: Empirical studies for effective near-field haptics in virtual environments. In: Proceedings of the IEEE Virtual Reality Conference, pp. 287–288. IEEE Computer Society, Los Alamitos, CA (2003)Google Scholar
  8. 8.
    Jones, L.A., Held, D., Hunter, I.: Surface waves and spatial localization in vibrotactile displays. In: IEEE Haptics Symposium, pp. 91–94 (2010)Google Scholar
  9. 9.
    Cholewiak, R.W., Brill, J.C., Schwab, A.: Vibrotactile localization on the abdomen: Effects of place and space. Percept. Psychophys. 66(6), 970–987 (2004)CrossRefGoogle Scholar
  10. 10.
    Jones, L.A., Ray, K.: Localization and pattern recognition with tactile displays. In: Haptic Interfaces for Virtual Environment and Teleoperator Systems, IEEE Symposium on Haptics, pp. 33–39 (2008)Google Scholar
  11. 11.
    Bekesy, G.V.: Funneling in the nervous system and its role in loudness and sensation intensity on the skin. J. Acoust. Soc. Am. 30(5), 399–412 (1958)CrossRefGoogle Scholar
  12. 12.
    Cha, J., Rahal, L., El Saddik, A.: A pilot study on simulating continuous sensation with two vibrating motors. In: Proceedings of HAVE, pp. 143–147 (2008)Google Scholar
  13. 13.
    Alles, D.S.: Information transmission by phantom sensations. IEEE Trans. Man-Mach. Syst. 11(1), 85–91 (1970)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Rahal, L., Cha, J., El Saddik, A.: Continuous tactile perception for vibrotactile displays. In: IEEE International Workshop on Robotic and Sensors Environments (ROSE), pp. 86–91 (2009)Google Scholar
  15. 15.
    Stafford, T., Javaid, M., Mitchinson, B., Galloway, A.M.J., Prescott, T.J.: Integrating augmented senses into active perception: a framework. In: Poster Presented at Royal Society meeting on Active Touch Sensing, 31 Jan–02 Feb 2011 (2011)Google Scholar
  16. 16.
    Dobrzynski, M.K., et al.: Quantifying information transfer through a head-attached vibrotactile display: principles for design and control. IEEE Trans. Biomed. Eng. 59(7), 2011–2018 (2012)CrossRefGoogle Scholar
  17. 17.
    Barghout, A., et al.: Spatial resolution of vibrotactile perception on the human forearm when exploiting funneling illusion. In: IEEE International Workshop on Haptic Audiovisual Environments and Games (HAVE), pp. 19–23 (2009)Google Scholar
  18. 18.
    Sofia, K.O., Jones, L.A.: Mechanical and psychophysical studies of surface wave propagation during vibrotactile stimulation. IEEE Trans. Haptics 6, 320–329 (2013)CrossRefGoogle Scholar
  19. 19.
    Prescott, T.J., Wing, A.M.: Active touch sensing. Philoshipcal Trans. R. Soci. B. Biol. Sci. 366(1581), 2989–2995 (2011)CrossRefGoogle Scholar
  20. 20.
    O’Regan, K., Noë, A.: A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24(5), 939–973 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hamideh Kerdegari
    • 1
    Email author
  • Yeongmi Kim
    • 2
  • Tom Stafford
    • 1
  • Tony J. Prescott
    • 1
  1. 1.Sheffield Center for Robotics (SCentRo)University of SheffieldSheffieldUK
  2. 2.Interactive Graphics and Simulation LabUniversity of InnsbruckInnsbruckAustria

Personalised recommendations