Skip to main content

Modeling the Weber Fraction of Vibrotactile Amplitudes Using Gain Control Through Global Feedforward Inhibition

  • Conference paper
  • First Online:
Book cover Haptics: Neuroscience, Devices, Modeling, and Applications (EuroHaptics 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8619))

  • 2456 Accesses

Abstract

Weber’s law describes the linear drop of discriminative performance with increased base intensity of a stimulus. So far, this phenomenon has been modeled using multistable attractor decision networks based on the principle of biased competition between two mutually inhibiting recurrent neural populations. Due to the sensitive balance in a multistable fluctuation-driven regime, these decision models can only account for Weber’s law in a narrow stimulus range. Psychophysical data shows though that the human exhibits this characteristic for a broad stimulus range. Recent neurophysiological evidence suggests that global feedforward inhibition expands the dynamic range of cortical neuron populations and acts as a gain control. In this paper, we introduce a computational model that exploits this type of inhibition and shows through a fit between simulation results and psychophysical data that it is a potential explanation for the principle mechanism behind Weber’s law.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Craig, J.C.: Difference threshold for intensity of tactile stimuli. Percept. Psychophys. 11, 150–152 (1972). Springer

    Article  Google Scholar 

  2. Deco, G., Scarano, L., Soto-Faraco, S.: Weber’s law in decision making: integrating behavioral data in humans with a neurophysiological model. J. Neurosci. Soc. Neurosci. 27, 11192–11200 (2007)

    Article  Google Scholar 

  3. Fechner, G.T.: Elemente der Psychosophysik. vol. 2 (1860)

    Google Scholar 

  4. Gabernet, L., Jadhav, S.P., Feldman, D.E., Carandini, M., Scanziani, M.: Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48, 315–327 (2005). Elsevier

    Article  Google Scholar 

  5. Gentet, L.J., Avermann, M., Matyas, F., Staiger, J.F., Petersen, C.C.: Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65, 422–435 (2010)

    Article  Google Scholar 

  6. Gescheider, G.A.: Psychophysics: the fundamentals. Psychol. Press. 65, 422–435 (1976)

    Google Scholar 

  7. Harvey, M.A., Saal, H.P., Dammann III, J.F., Bensmaia, S.J.: Multiplexing stimulus information through rate and temporal codes in primate somatosensory cortex. PLoS Biol. Pub. Lib. Sci. 11, e1001558 (2013)

    Article  Google Scholar 

  8. Kawaguchi, Y., Kubota, Y.: GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex 7, 476–486 (1997). Oxford Univ Press

    Article  Google Scholar 

  9. Machens, C.K., Romo, R., Brody, C.D.: Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science 307, 1121–1124 (2005). American Association for the Advancement of Science

    Article  Google Scholar 

  10. Moore, A.K., Wehr, M.: Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency. J. Neurosci. Soc. Neurosci. 33, 13713–13723 (2013)

    Article  Google Scholar 

  11. Okun, M., Lampl, I.: Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat. Neurosci. 11, 535–537 (2008)

    Article  Google Scholar 

  12. Pouille, F., Marin-Burgin, A., Adesnik, H., Atallah, B.V., Scanziani, M.: Input normalization by global feedforward inhibition expands cortical dynamic range. Nat. Neurosci. 12, 1577–1585 (2009). Nature publishing group

    Article  Google Scholar 

  13. Rothenberg, M., Verrillo, R.T., Zahorian, S.A., Brachman, M.L., Bolanowski Jr., S.J.: Vibrotactile frequency for encoding a speech parameter. Acoust. Soc. Am. 62, 1003–1012 (1977)

    Article  Google Scholar 

  14. Runyan, C.A., Sur, M.: Response selectivity is correlated to dendritic structure in parvalbumin-expressing inhibitory neurons in visual cortex. J. Neurosci. Soc. Neurosci. 33, 11724–11733 (2013)

    Article  Google Scholar 

  15. Smith, P.L., Ratcliff, R.: Psychology and neurobiology of simple decisions. Trends Neurosci. 27, 161–168 (2004). Elsevier

    Article  Google Scholar 

  16. Usher, M., McClelland, J.L.: The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Revi. 108, 550–592 (2001). American Psychological Association

    Article  Google Scholar 

  17. Wilson, N.R., Runyan, C.A., Wang, F.L., Sur, M.: Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488, 343–348 (2012)

    Article  Google Scholar 

  18. Wong, K.-F., Wang, X.-J.: A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26, 1314–1328 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken E. Friedl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedl, K.E., Qin, Y., Ostler, D., Peer, A. (2014). Modeling the Weber Fraction of Vibrotactile Amplitudes Using Gain Control Through Global Feedforward Inhibition. In: Auvray, M., Duriez, C. (eds) Haptics: Neuroscience, Devices, Modeling, and Applications. EuroHaptics 2014. Lecture Notes in Computer Science(), vol 8619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44196-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44196-1_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44195-4

  • Online ISBN: 978-3-662-44196-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics